A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Direct Observation of Oxidation Reaction via Closed Bipolar Electrode-Anodic Electrochemiluminescence Protocol: Structural Property and Sensing Applications. | LitMetric

Direct Observation of Oxidation Reaction via Closed Bipolar Electrode-Anodic Electrochemiluminescence Protocol: Structural Property and Sensing Applications.

ACS Sens

National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, School of Chemical Engineering , Huaiyin Institute of Technology, Huai'an , Jiangsu 223003 , China.

Published: November 2018

In this work, we developed an innovative closed bipolar electrode (BPE)-electrochemiluminescence (ECL) sensing strategy with generality for target detection. Based on charge balance and 100% current efficiency between the closed BPE poles and the driving electrodes, one of the driving electrodes in one cell of the closed BPE system was employed as ECL sensing surface to reflect the target on the BPE pole in the opposite cell. Compared with traditional BPE-ECL sensing method, which in general adopted the anodic ECL reagents such as Ru(bpy) and its coreactant on one pole (anode) to reflect the target (occurring reduction reaction) on the other pole (cathode), the difference was that the targets occurring oxidation reaction could be detected by the anodic ECL reagents based on this strategy. To verify the feasibility of this strategy, the detection principle was stated first, and Fe(CN) as model target at anodic BPE pole were detected by anodic ECL reagents (Ru(bpy) and TprA) on the driving electrode first. The ECL signals showed good performance for target detection. By changing the size and the material of the BPE pole where the targets were located, the detection of l-ascorbic acid (AA), uric acid (UA), and dopamine (DA) as other model targets with higher detection limit were accomplished. Visual and high-throughput detection of AA, UA, and DA were also successfully realized by an array of the closed BPE system. This closed BPE (array) system is an effective supplement of traditional BPE-ECL sensing and could greatly expand the scope of the detection target.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.8b00736DOI Listing

Publication Analysis

Top Keywords

closed bpe
16
bpe pole
12
anodic ecl
12
ecl reagents
12
oxidation reaction
8
closed bipolar
8
ecl sensing
8
target detection
8
driving electrodes
8
bpe system
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!