Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
InGaN/GaN nanowire arrays (NWA) exhibit efficient photoluminescence (PL) in the green spectral range, which extends to temperatures well beyond 200 °C. Previous work has shown that their PL is effectively quenched when oxidizing gas species such as O, NO, and O abound in the ambient air. In the present work we extend our investigations to reducing gas species, in particular to alcohols and aliphatic hydrocarbons with C to C chain lengths. We find that these species give rise to an enhancing PL response which can only be observed when the NWAs are operated at elevated temperature and in reactive synthetic air backgrounds. Hardly any response can be observed when the NWAs are operated in inert N backgrounds, neither at room temperature nor at elevated temperature. We attribute such enhancing PL response to the removal of quenching oxygen and the formation of enhancing water adsorbates as hydrocarbons interact with oxygen species coadsorbed on the heated InGaN surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.8b00417 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!