Background: The ability to accurately diagnose and objectively localize pain generators in chronic pain sufferers remains a major clinical challenge since assessment relies on subjective patient complaints and relatively non-specific diagnostic tools. Developments in clinical molecular imaging, including advances in imaging technology and radiotracer design, have afforded the opportunity to identify tissues involved in pain generation based on their pro-nociceptive condition. The sigma-1 receptor (S1R) is a pro-nociceptive receptor upregulated in painful, inflamed tissues, and it can be imaged using the highly specific radioligand F-FTC-146 with PET.

Case Presentation: A 50-year-old woman with a 7-year history of refractory, left-knee pain of unknown origin was referred to our pain management team. Over the past several years, she had undergone multiple treatments, including a lateral retinacular release, radiofrequency ablation of a peripheral nerve, and physical therapy. While certain treatments provided partial relief, her pain would inevitably return to its original state. Using simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) with the novel radiotracer F-FTC-146, imaging showed increased focal uptake of F-FTC-146 in the intercondylar notch, corresponding to an irregular but equivocal lesion identified in the simultaneously acquired MRI. These imaging results prompted surgical removal of the lesion, which upon resection was identified as an inflamed, intraarticular synovial lipoma. Removal of the lesion relieved the patient's pain, and to date the pain has not recurred.

Conclusion: We present a case of chronic, debilitating knee pain that resolved with surgery following identification of the pathology with a novel clinical molecular imaging approach that detects chronic pain generators at the molecular and cellular level. This approach has the potential to identify and localize pain-associated pathology in a variety of chronic pain syndromes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190812PMC
http://dx.doi.org/10.2147/JPR.S167839DOI Listing

Publication Analysis

Top Keywords

pain
12
chronic pain
12
knee pain
8
sigma-1 receptor
8
pain generators
8
clinical molecular
8
molecular imaging
8
removal lesion
8
imaging
6
chronic
5

Similar Publications

The P2X4 receptor is implicated in various pathological conditions, including neuropathic pain and cancer. This study reports the development of 1,4-naphthodiazepinedione-based P2X4 receptor antagonists aimed at both therapeutic applications and potential use as PET tracers for imaging P2X4 receptor expression in cancer. Structure-activity relationship studies aided by docking studies and molecular dynamics simulations led to a series of compounds with potent P2X4 receptor antagonism, promising inhibition of interleukin-1β release in THP-1 cells and suitability for radiolabeling with fluorine-18.

View Article and Find Full Text PDF

Background: Physicians worldwide face the challenging task of improving patient satisfaction by reducing pain in injured patients. Currently, available therapeutic approaches provide only short-term relief of symptoms without addressing long-term satisfaction. This has led to exploring regenerative treatment options that can deliver better outcomes.

View Article and Find Full Text PDF

Objective: To provide evidence that catastrophizing is the primer of the cognitive-behavioural model of fear of movement/(re)injury (FAM).

Design: A cross-sectional analysis of 180 outpatients with chronic non-specific low back pain who completed the Pain Catastrophizing Scale (PCS), the Tampa Scale of Kinesiophobia (TSK), the Roland-Morris Disability Questionnaire (RMDQ), the Hospital Anxiety and Depression Scale - Depression (HADS-D), and a pain intensity numerical rating scale (NRS). The intercorrelations of the outcome measures were estimated using Pearson's correlation coefficient (r), and regression analyses were used to examine their predictive values by following the left side of the FAM clockwise from the PCS (p = 0.

View Article and Find Full Text PDF

Mitochondrial Electron Flow Dynamics Imaging for Assessing Mitochondrial Quality and Drug Screening.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, School of Pharmaceutical Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China.

Mitochondrial quality control is paramount for cellular development, with mitochondrial electron flow (Mito-EF) playing a central role in maintaining mitochondrial homeostasis. However, unlike visible protein entities, which can be monitored through chemical biotechnology, regulating mitochondrial quality control by invisible entities such as Mito-EF has remained elusive. Here, a Mito-EF tracker (Mito-EFT) with a four-pronged probe design is presented to elucidate the dynamic mechanisms of Mito-EF's involvement in mitochondrial quality control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!