Human societies depend on an Earth system that operates within a constrained range of nutrient availability, yet the recent trajectory of terrestrial nitrogen (N) availability is uncertain. Examining patterns of foliar N concentrations and isotope ratios (δN) from more than 43,000 samples acquired over 37 years, here we show that foliar N concentration declined by 9% and foliar δN declined by 0.6-1.6‰. Examining patterns across different climate spaces, foliar δN declined across the entire range of mean annual temperature and mean annual precipitation tested. These results suggest declines in N supply relative to plant demand at the global scale. In all, there are now multiple lines of evidence of declining N availability in many unfertilized terrestrial ecosystems, including declines in δN of tree rings and leaves from herbarium samples over the past 75-150 years. These patterns are consistent with the proposed consequences of elevated atmospheric carbon dioxide and longer growing seasons. These declines will limit future terrestrial carbon uptake and increase nutritional stress for herbivores.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41559-018-0694-0 | DOI Listing |
Front Microbiol
December 2024
Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
The rapid expansion of solar photovoltaic (PV) power generation raises concerns regarding its impact on terrestrial ecosystems. Although the influence of PV panels on soil conditions and plant biomass is acknowledged, their effects on the assembly processes and co-occurrence networks of soil microbial communities remain understudied. Clarifying this influence is crucial for understanding the effects of photovoltaic panels on soil ecosystem functions.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
School of Geographical Sciences and Tourism, Xinjiang Normal University, Urumqi 830054, China.
Land use change is the main cause of carbon stock changes in terrestrial ecosystems. Studying the impact mechanisms of carbon stock changes in different land use types in the arid zone and simulating future changes in land use and carbon stock under different scenarios will help to formulate a scientific land use policy for the arid zone to promote high-quality and sustainable development in the region. Based on the Xinjiang land use data from 2000 to 2020, the coupled PLUS-InVEST model analyzed the spatial and temporal characteristics of land use and carbon stock in Xinjiang from 2000 to 2020 and predicted the changes in land use and carbon stock in Xinjiang in 2030 under the scenarios of natural development (Z1), economic development (Z2), sustainable development (Z3), arable land preservation development (Z4), and ecological protection development (Z5).
View Article and Find Full Text PDFSci Total Environ
December 2024
Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, Beijing, China; Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China.
Water use efficiency (WUE) is a tracer for plants on the trade-off exchange of water and carbon dioxide between terrestrial ecosystems and the atmosphere; therefore, a dynamic investigation of WUE and its driving factors will be of great significance to optimize water and carbon fitness and predict the plants' response to climate change. In our study, a modified water use efficiency model was proposed to improve the quantification of carbon and water processes by adding a photosynthesis-g simulation dependent on CO concentration and soil moisture to the photosynthetic transpiration model (noted as SMPTSB model). Actual measured water use efficiencies were respectively obtained by the gas exchange measurements (WUE) and the δC that defined as the carbon-heavy isotope of the water-soluble compound in leaves (WUE) of three-year tree saplings of Platycladus orientalis (L.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
School of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, Athens 30602, Georgia, United States.
This study investigated the speciation and aqueous dissolution of macronutrients in fire ash from diverse ecosystems and speciation of ash and smoke from laboratory burning, exploring the variations and their causes. The speciation of phosphorus (P), calcium (Ca), and potassium (K) in fire ash from five globally distributed ecosystems was characterized by using X-ray absorption spectroscopy and sequential fractionation. Aqueous dissolution of the macronutrients was measured by batch experiments at acidic and alkaline pHs.
View Article and Find Full Text PDFPeerJ
December 2024
College of Agronomy, Guizhou University, Guiyang, Guizhou, China.
Background: Nitrogen mineralization plays a critical role in the ecosystem cycle, significantly influencing both the ecosystem function and the nitrogen biogeochemical cycle. Therefore, it is essential to investigate the evolutionary characteristics of soil nitrogen mineralization during the karst vegetation restoration to better understand its importance in the terrestrial nitrogen cycle.
Methods: This study analyzed from various stages of vegetation growth, including a 40-year-old woodland, 20-year-old shrubland, 15-year-old shrubland, 5-year-old grassland, and nearby cropland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!