Heterozygous deletion of chromosome 17p (17p) is one of the most frequent genomic events in human cancers. Beyond the tumor suppressor TP53, the POLR2A gene encoding the catalytic subunit of RNA polymerase II (RNAP2) is also included in a ~20-megabase deletion region of 17p in 63% of metastatic castration-resistant prostate cancer (CRPC). Using a focused CRISPR-Cas9 screen, we discovered that heterozygous loss of 17p confers a selective dependence of CRPC cells on the ubiquitin E3 ligase Ring-Box 1 (RBX1). RBX1 activates POLR2A by the K63-linked ubiquitination and thus elevates the RNAP2-mediated mRNA synthesis. Combined inhibition of RNAP2 and RBX1 profoundly suppress the growth of CRPC in a synergistic manner, which potentiates the therapeutic effectivity of the RNAP2 inhibitor, α-amanitin-based antibody drug conjugate (ADC). Given the limited therapeutic options for CRPC, our findings identify RBX1 as a potentially therapeutic target for treating human CRPC harboring heterozygous deletion of 17p.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197287 | PMC |
http://dx.doi.org/10.1038/s41467-018-06811-z | DOI Listing |
Neurodegener Dis Manag
January 2025
Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA.
Friedreich ataxia (FRDA) is a slowly progressive neurological disease resulting from decreased levels of the protein frataxin, a small mitochondrial protein that facilitates the synthesis of iron-sulfur clusters in the mitochondrion. It is caused by GAA (guanine-adenine-adenine) repeat expansions in the gene in 96% of patients, with 4% of patients carrying other mutations (missense, nonsense, deletion) in the gene. Compound heterozygote patients with one expanded GAA allele and a non-GAA repeat mutation can have subtle differences in phenotype from typical FRDA, including, in patients with selected missense mutations, both more severe features and less severe features in the same patient.
View Article and Find Full Text PDFClin Dysmorphol
January 2025
Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
Introduction: Agrin, encoded by AGRN, plays a vital role in the acetylcholine receptor clustering pathway, and any defects in this pathway are known to cause congenital myasthenic syndrome (CMS) 8 in early childhood with variable fatigable muscle weakness. The most severe or lethal form of CMS manifests as a fetal akinesia deformation sequence (FADS). To date, only one family has been reported with an association of null variants in AGRN and a lethal FADS.
View Article and Find Full Text PDFNeurol Genet
December 2024
From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland.
Background And Objectives: Tibial muscular dystrophy (TMD) is an autosomal dominant, slowly progressive late-onset distal myopathy. TMD was first described in 1991 by Udd et al. in Finnish patients, who were later found to harbor a heterozygous unique 11-bp insertion/deletion in the last exon of the gene-the Finnish founder variant (FINmaj).
View Article and Find Full Text PDFIntroduction: Structural variants (SVs) of the nebulin gene ( ), including intragenic duplications, deletions, and copy number variation of the triplicate region, are an established cause of recessively inherited nemaline myopathies and related neuromuscular disorders. Large deletions have been shown to cause dominantly inherited distal myopathies. Here we provide an overview of 35 families with muscle disorders caused by such SVs in .
View Article and Find Full Text PDFAm J Case Rep
January 2025
Research Institute of Dentistry, Department of Integral Dental Clinics, University Center of Health Sciences, Universidad de Guadalajara, Guadalajara, Mexico.
BACKGROUND Cowden syndrome is a genetic disorder that predisposes individuals to cancer and is characterized by hamartomas derived from 3 germ layers. Although the clinical signs can be pathognomonic, diagnosis is often aided by biopsies, histopathological examination of oral and cutaneous lesions, and genetic studies, including multiple ligation-dependent probe amplification (MLPA). CASE REPORT We report a case of a 35-year-old woman who manifested with multiple lesions in the buccal mucosa, dorsum of the tongue, and gums, along with papillomatous papules on her facial skin and the dorsal surfaces of her hands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!