Cyclophilin J limits inflammation through the blockage of ubiquitin chain sensing.

Nat Commun

Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 510060, Guangzhou, Guangdong, China.

Published: October 2018

Maintaining innate immune homeostasis is important for individual health. Npl4 zinc finger (NZF) domain-mediated ubiquitin chain sensing is reported to function in the nuclear factor-kappa B (NF-κB) signal pathway, but the regulatory mechanism remains elusive. Here we show that cyclophilin J (CYPJ), a member of the peptidylprolyl isomerase family, is induced by inflammation. CYPJ interacts with the NZF domain of transform growth factor-β activated kinase 1 binding protein 2 and 3 as well as components of the linear ubiquitin chain assembly complex to block the binding of ubiquitin-chain and negatively regulates NF-κB signaling. Mice with Cypj deficiency are susceptible to lipopolysaccharide and heat-killed Listeria monocytogenes-induced sepsis and dextran sulfate sodium-induced colitis. These findings identify CYPJ as a negative feedback regulator of the NF-κB signaling pathway, and provide insights for understanding the homeostasis of innate immunity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197184PMC
http://dx.doi.org/10.1038/s41467-018-06756-3DOI Listing

Publication Analysis

Top Keywords

ubiquitin chain
12
chain sensing
8
nf-κb signaling
8
cyclophilin limits
4
limits inflammation
4
inflammation blockage
4
blockage ubiquitin
4
sensing maintaining
4
maintaining innate
4
innate immune
4

Similar Publications

Ubiquitin-A structural perspective.

Mol Cell

January 2025

Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia. Electronic address:

The modification of proteins and other biomolecules with the small protein ubiquitin has enthralled scientists from many disciplines for decades, creating a broad research field. Ubiquitin research is particularly rich in molecular and mechanistic understanding due to a plethora of (poly)ubiquitin structures alone and in complex with ubiquitin machineries. Furthermore, due to its favorable properties, ubiquitin serves as a model system for many biophysical and computational techniques.

View Article and Find Full Text PDF

A growing body of evidence suggests the involvement of long noncoding ribose nucleic acids (lncRNAs) in acute kidney injury (AKI). This study focused on the mechanistic role of lncRNA small nucleolar RNA host gene 12 (SNHG12) in ischemia/reperfusion (I/R)-mediated AKI. A model of hypoxia/reoxygenation (H/R) was created using human kidney cells (HK-2).

View Article and Find Full Text PDF

dampens SUMOylation and promotes intestinal inflammation.

Gut Microbes

December 2025

Univ Rouen Normandie, INSERM, Normandie Univ, ADEN, UMR 1073 Nutrition, Inflammation and Microbiota-Gut-Brain axis, Rouen, France.

Gut bacteria play key roles in intestinal physiology, via the secretion of diversified bacterial effectors. Many of these effectors remodel the host proteome, either by altering transcription or by regulating protein post-translational modifications. SUMOylation, a ubiquitin-like post-translational modification playing key roles in intestinal physiology, is a target of gut bacteria.

View Article and Find Full Text PDF

ZFAND6 is a zinc finger protein that interacts with TNF receptor-associated factor 2 (TRAF2) and polyubiquitin chains and has been linked to tumor necrosis factor (TNF) signaling. Here, we report a previously undescribed function of ZFAND6 in maintaining mitochondrial homeostasis by promoting mitophagy. Deletion of ZFAND6 in bone marrow-derived macrophages (BMDMs) upregulates reactive oxygen species (ROS) and the accumulation of damaged mitochondria due to impaired mitophagy.

View Article and Find Full Text PDF

Polyglucosans are glycogen molecules with overlong chains, which are hyperphosphorylated in the neurodegenerative Lafora disease (LD). Brain polyglucosan bodies (PBs) cause fatal neurodegenerative diseases including Lafora disease and adult polyglucosan body disease (ABPD), for which treatments, biomarkers, and good understanding of their pathogenesis are currently missing. Mutations in the genes for the phosphatase laforin or the E3 ubiquitin ligase malin can cause LD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!