Many biological systems rely on the ability to self-assemble different target structures using the same set of components. Equilibrium self-assembly suffers from a limited capacity in such cases, due to an increasing number of decoy states that grows rapidly with the number of targets encoded. Moreover, improving the kinetic stability of a target at equilibrium carries the price of introducing kinetic traps, leading to slower assembly. Using a toy physical model of interacting particles, we demonstrate that local driving can improve both the assembly time and kinetic stability of multitarget self-assembly, as well as reduce fluctuations around the target configuration. We further show that the local drive can result in a steady-state probability distribution over target structures that deviates from the Boltzmann distribution in a way that depends on the types of interactions that stabilize the targets. Our results illustrate the role that nonequilibrium driving plays in overcoming tradeoffs that are inherent to equilibrium assemblies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233095 | PMC |
http://dx.doi.org/10.1073/pnas.1805769115 | DOI Listing |
Z Evid Fortbild Qual Gesundhwes
January 2025
Institut für Medizinmanagement und Gesundheitswissenschaften (IMG) der Universität Bayreuth, Bayreuth, Deutschland.
Introduction: Unmet health care needs are seen as a key indicator of equity in access to health care. With younger people, they can lead to poorer health outcomes in adulthood, and in older people they can be associated with an increased risk of mortality. The presence of a disability is considered a risk factor for unmet needs.
View Article and Find Full Text PDFMed Dosim
January 2025
Department of Radiation Oncology, Peking University First Hospital, Beijing, China. Electronic address:
This study presents a patient with a PET-CT detected residual lacrimal sac tumor who was treated with intensity modulated proton therapy (IMPT) and concurrent chemotherapy. The patient a 49-year-old male diagnosed with squamous cell carcinoma of the left lacrimal sac had under-went endoscopic surgery. Postoperative PET-CT implied tumor residual in the left lacrimal sac.
View Article and Find Full Text PDFObjective: To update and establish content validity for the Checklist of NICU Caregiver Behaviors.
Design: Structured literature review and Delphi analysis.
Setting/local Problem: Neonates born prematurely or who are sick in the NICU are frequently exposed to harmful stimuli that can affect brain development and result in adverse neurodevelopmental outcomes.
Structure
January 2025
Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA. Electronic address:
High-risk human papillomavirus E6 oncoprotein is a model system for the recognition and degradation of cellular p53 tumor suppressor protein. There remains a gap in the understanding of the ubiquitin transfer reaction, including placement of the E6AP catalytic HECT domain of the ligase concerning the p53 substrate and how E6 itself is protected from ubiquitination. We determined the cryoelectron microscopy (cryo-EM) structure of the E6AP/E6/p53 complex, related the structure to in vivo modeling of the tri-molecular complex, and identified structural interactions associated with activation of the ubiquitin ligase function.
View Article and Find Full Text PDFNucl Med Biol
January 2025
State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia. Electronic address:
Introduction: Folate receptors (FR) have been considered a convenient target for different radiopharmaceuticals in recent years. Multifarious Ga-labeled folate conjugates have been proposed as promising agents for the PET imaging of FR-overexpressing malignant neoplasms. In addition, radiolabeled folate-based conjugates can be effective for imaging non-tumor pathological foci characterized by a pronounced cluster of activated macrophages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!