Determination of long-term tropical cyclone (TC) variability is of enormous importance to society; however, changes in TC activity are poorly understood owing to discrepancies among various datasets and limited span of instrumental records. While the increasing intensity and frequency of TCs have been previously documented on a long-term scale using various proxy records, determination of their poleward migration has been based mostly on short-term instrumental data. Here we present a unique tree-ring-based approach for determination of long-term variability in TC activity via forest disturbance rates in northeast Asia (33-45°N). Our results indicate significant long-term changes in TC activity, with increased rates of disturbances in the northern latitudes over the past century. The disturbance frequency was stable over time in the southern latitudes, however. Our findings of increasing disturbance frequency in the areas formerly situated at the edge of TC activity provide evidence supporting the broad relevance of poleward migration of TCs. Our results significantly enhance our understanding of the effects of climate change on TCs and emphasize the need for determination of long-term variation of past TC activity to improve future TC projections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233067 | PMC |
http://dx.doi.org/10.1073/pnas.1808979115 | DOI Listing |
Curr Biol
December 2024
Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074 Würzburg, Germany; AG Neurosensorik/Animal Navigation, Institute of Biology and Environmental Sciences, Faculty V, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany. Electronic address:
Spatial orientation based on the geomagnetic field (GMF) is a widespread phenomenon in the animal kingdom, predominantly observed in long-distance migrating birds, sea turtles, lobsters, and Lepidoptera. Although magnetoreception has been studied intensively, the mechanism remains elusive. A crucial question for a mechanistic understanding of magnetoreception is whether animals rely on inclination or polarity-based magnetic information.
View Article and Find Full Text PDFPLoS One
November 2024
Ocean Acoustics Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
Nature
December 2024
Department of Climate Geochemistry, Max Planck Institute for Chemistry, Mainz, Germany.
Rising carbon dioxide emissions are provoking ocean warming and acidification, altering plankton habitats and threatening calcifying organisms, such as the planktonic foraminifera (PF). Whether the PF can cope with these unprecedented rates of environmental change, through lateral migrations and vertical displacements, is unresolved. Here we show, using data collected over the course of a century as FORCIS global census counts, that the PF are displaying evident poleward migratory behaviours, increasing their diversity at mid- to high latitudes and, for some species, descending in the water column.
View Article and Find Full Text PDFNature
December 2024
School of Earth Sciences, University of Bristol, Bristol, UK.
Climate change affects marine organisms, causing migrations, biomass reduction and extinctions. However, the abilities of marine species to adapt to these changes remain poorly constrained on both geological and anthropogenic timescales. Here we combine the fossil record and a global trait-based plankton model to study optimal temperatures of marine calcifying zooplankton (foraminifera, Rhizaria) through time.
View Article and Find Full Text PDFSci Rep
November 2024
University of Magallanes, Av. Manuel Bulnes 1855, Punta Arenas, 621-0427, Chile.
Seasonal snow in the extratropical Andes is a primary water source for major rivers supplying water for drinking, agriculture, and hydroelectric power in Central Chile. Here, we used estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) to analyze changes in snow cover extent over the period 2001-2022 in a total of 18 watersheds spanning approximately 1,100 km across the Chilean Andes (27-36°S). We found that the annual snow cover extent is receding in the watersheds analyzed at an average pace of approximately 19% per decade.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!