A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computationally Designed Bispecific MD2/CD14 Binding Peptides Show TLR4 Agonist Activity. | LitMetric

Toll-like receptor 4 plays an important role in the regulation of the innate and adaptive immune response. The majority of TLR4 activators currently in clinical use are derivatives of its prototypic ligand LPS. The discovery of innovative TLR4 activators has the potential of providing new therapeutic immunomodulators and adjuvants. We used computational design methods to predict and optimize a total of 53 cyclic and linear peptides targeting myeloid differentiation 2 (MD2) and cluster of differentiation 14 (CD14), both coreceptors of human TLR4. Activity of the designed peptides was first assessed using NF-κB reporter cell lines expressing either TLR4/MD2 or TLR4/CD14 receptors, then binding to CD14 and MD2 confirmed and quantified using MicroScale Thermophoresis. Finally, we incubated select peptides in human whole blood and observed their ability to induce cytokine production, either alone or in synergy with LPS. Our data demonstrate the advantage of computational design for the discovery of new TLR4 peptide activators with little structural resemblance to known ligands and indicate an efficient strategy with which to identify TLR4 targeting peptides that could be used as easy-to-produce alternatives to LPS-derived molecules in a variety of settings.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1800380DOI Listing

Publication Analysis

Top Keywords

tlr4 activators
8
computational design
8
tlr4
6
peptides
5
computationally designed
4
designed bispecific
4
bispecific md2/cd14
4
md2/cd14 binding
4
binding peptides
4
peptides tlr4
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!