Blocking of Type 1 Angiotensin II Receptor Inhibits T-lymphocyte Activation and IL-2 Production.

In Vivo

Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Cell-based Drug and Health Products Development Recearch Unit, Chulalongkorn University, Bangkok, Thailand

Published: January 2019

Background/aim: Novel information on the role of endogenous compounds in regulating physiological and pathological process are of interest, as it may lead to the development of better strategies for disease management. The role of angiotensin II and the signaling of type 1 angiotensin II receptor (AGT1R) in T-lymphocyte activation and interleukin-2 (IL-2) production are largely unknown.

Materials And Methods: Jurkat T-cells were treated with AGT1R inhibitor candesartan and stimulated with phorbol myristate acetate (PMA) and ionomycin. T-Cell activation, associated cytokine production and levels of signaling proteins were evaluated by flow cytometry and western blot analysis.

Results: Candesartan significantly suppressed PMA and ionomycin-induced CD25 expression and IL-2 production. Regarding the molecular mechanism involved, we showed that such suppressive effects of blocking of AGT1R by candesartan resulted in the significant inhibition of ERK activation in PMA-stimulated Jurkat T-cells. The effect of ERK inhibition on T-cell activation was further confirmed. Treatment with FR180204, a specific ERK inhibitor, reduced T-cell activation and IL-2 secretion.

Conclusion: AGT1R signaling is essential for T-cell activation and IL-2 production, and the inhibition of this pathway suppressed T-cell activation via an ERK-dependent mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6365736PMC
http://dx.doi.org/10.21873/invivo.11386DOI Listing

Publication Analysis

Top Keywords

t-cell activation
20
il-2 production
16
activation il-2
12
type angiotensin
8
angiotensin receptor
8
activation
8
t-lymphocyte activation
8
jurkat t-cells
8
il-2
5
production
5

Similar Publications

Cytomegalovirus infections and reactivations are more frequent in people living with HIV (PLWH) and have been associated with increased risk of HIV progression and immunosenescence. We explored the impact of combination antiretroviral therapy (cART) on latent CMV infection in 225 young adults parenterally infected with HIV during childhood. Anti-CMV IgG antibodies were present in 93.

View Article and Find Full Text PDF

Background/objectives: Effectively targeting treatment-resistant tumor cells, particularly cancer stem cells (CSCs) involved in tumor recurrence, remains a major challenge in immunotherapy. This study examines the potential of combining mechanical high-intensity focused ultrasound (M-HIFU) with dendritic cell (DC) vaccines to enhance immune responses against OLFM4-expressing tumors, a CSC marker linked to immune evasion and tumor growth.

Methods: M-HIFU was applied to induce immunogenic cell death by mechanically disrupting tumor cells, releasing tumor-associated antigens and creating an immunostimulatory environment.

View Article and Find Full Text PDF

Specific Immune Responses and Oncolytic Effects Induced by EBV LMP2A-Armed Modified Ankara-Vaccinia Virus Vectored Vaccines in Nasopharyngeal Cancer.

Pharmaceutics

January 2025

NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.

Background: The Epstein-Barr virus (EBV) is intricately linked to a range of human malignancies, with EBV latent membrane protein 2A (LMP2A) emerging as a potential target antigen for immunotherapeutic strategies in the treatment of nasopharyngeal carcinoma (NPC).

Methods: The modified vaccinia virus Ankara (MVA) is universally used in vector vaccine research because of its excellent safety profile and highly efficient recombinant gene expression. Here, we constructed a novel MVA-LMP2A recombinant virus and investigated its specific immune response induction and oncolytic effect.

View Article and Find Full Text PDF

Targeting T-Cell Activation for Malaria Immunotherapy: Scoping Review.

Pathogens

January 2025

Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia.

Malaria remains a critical global health issue due to high mortality rates, drug resistance, and low treatment efficacy. The genetic variability of proteins complicates the development of long-lasting immunity, as it impedes the human immune system's ability to sustain effective responses. T cells play a crucial role in combating malaria, but the parasite's complex life cycle-spanning liver and blood stages-presents significant challenges in effectively activating and targeting these cells.

View Article and Find Full Text PDF

Very virulent plus Marek's disease virus (vv+MDV) induces severe immunosuppression in commercial chickens. In this study, we evaluated how three Gallid alphaherpesvirus 2 (GaHV-2) vaccines (CVI-988, rMd5-BAC∆Meq, and CVI-LTR) protected against two negative outcomes of vv+MDV infection: (1) reduced viability and frequency of immune cells in the spleen and (2) decreased efficacy of the CEO (chicken embryo origin) vaccine against infectious laryngotracheitis challenge. At 25 days post-infection with vv+MDV 686, all vaccines are protected against the reduced viability of splenocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!