Jet-paddling jellies: swimming performance in the Rhizostomeae jellyfish .

J Exp Biol

School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK

Published: December 2018

Jellyfish are a successful and diverse class of animals that swim via jet propulsion, with swimming performance and propulsive efficiency being related to the animal's feeding ecology and body morphology. The Rhizostomeae jellyfish lack tentacles but possess four oral lobes and eight trailing arms at the centre of their bell, giving them a body morphology quite unlike that of other free-swimming medusae. The implications of this body morphology on the mechanisms by which thrust is produced are unknown. Here, we determined the wake structure and propulsive efficiency in the blue-blubber jellyfish (order: Rhizostomeae). The animal is propelled during both bell contraction and bell relaxation by different thrust-generating mechanisms. During bell contraction, a jet of fluid is expelled from the subumbrellar cavity, which results from the interaction between the counter-rotating stopping (from the preceding contraction cycle) and starting vortices, creating a vortex superstructure and propulsion. This species is also able to utilise passive energy recapture, which increases the animal's swimming velocity towards the end of the bell expansion phase when the bell diameter is constant. The thrust produced during this phase is the result of the flexible bell margin manoeuvring the stopping vortex into the subumbrellar cavity during bell relaxation, enhancing its circulation, and creating a region of high pressure on the inner surface of the bell and, consequently, thrust. These mechanisms of thrust generation result in having a relatively high propulsive efficiency compared with other swimmers, indicating that economical locomotion could be a contributing factor in the ecological success of these medusan swimmers.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.191148DOI Listing

Publication Analysis

Top Keywords

propulsive efficiency
12
body morphology
12
bell
9
swimming performance
8
rhizostomeae jellyfish
8
mechanisms thrust
8
thrust produced
8
bell contraction
8
bell relaxation
8
subumbrellar cavity
8

Similar Publications

Dual-driven biodegradable nanomotors for enhanced cellular uptake.

J Mater Chem B

January 2025

Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Hybrid nano-sized motors with navigation and self-actuation capabilities have emerged as promising nanocarriers for a wide range of delivery, sensing, and diagnostic applications due to their unique ability to achieve controllable locomotion within a complex biological environment such as tissue. However, most current nanomotors typically operate using a single driving mode, whereas propulsion induced by both external and local stimuli could be more beneficial to achieve efficient motility in a biomedical setting. In this work, we present a hybrid nanomotor by functionalizing biodegradable stomatocytes with platinum nanoparticles (Pt NPs).

View Article and Find Full Text PDF

Background: The Fontan procedure is a surgical intervention designed for patients with single ventricle physiology, wherein the systemic venous return is redirected into the pulmonary circulation, thereby facilitating passive pulmonary blood flow without the assistance of ventricular propulsion. Consequently, long-term follow-up of individuals who have undergone the asymptomatic Fontan procedure is essential.

Objectives: The aims of this investigation were to: 1) examine the impact of flow components and kinetic energy (KE) parameters on hemodynamic disturbances in asymptomatic Fontan patients and control group; 2) Assess left ventricular diastolic dysfunction through the analysis of 4D flow parameters across different Fontan sub-groups; 3) Compare intracardiac flow parameters among Fontan sub-groups based on morphological features of the left ventricle (LV) and right ventricle (RV).

View Article and Find Full Text PDF

Ammonium dinitramide (ADN) is a new green oxidant, which is a kind of high-energy ionic liquid and has been widely used in the field of liquid propulsion. When it is used in laser plasma propulsion, its poor absorption coefficient significantly limits its application. To address the issue, this paper investigates the effects of the content of the infrared dye and the laser energy density on the laser propulsion performance of an ADN-based liquid propellant.

View Article and Find Full Text PDF
Article Synopsis
  • Biomagnetic fluid dynamics (BFD) focuses on the behavior of bio-fluids, like blood, impacted by magnetic fields, which is important for medical applications such as targeted medication delivery and tumor treatment.
  • This study examines blood flow dynamics using trihybrid nanoparticles in a catheterized artery, factoring in various electromagnetic influences and propulsion mechanisms.
  • Key findings include that increasing Hall and ion-slip parameters boosts blood velocity, modifies entropy generation, and shows that modified hybrid nano-blood forms smaller, more manageable clumps compared to pure blood, with longer cilia enhancing recovery of these clumps.
View Article and Find Full Text PDF

The emerging new generation of small-scaled acoustic microrobots is poised to expedite the adoption of microrobotics in biomedical research. Recent designs of these microrobots have enabled intricate bioinspired motions, paving the way for their real-world applications. We present a multiorifice design of air-filled spherical microrobots that convert acoustic wave energy to efficient propulsion through a resonant encapsulated microbubble.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!