Variation in the induction of plant defenses along the plant canopy can determine distribution and colonization of arthropod herbivores within the plant. In tomato, type VI glandular trichomes, which are epidermal defensive structures, and their derived volatiles are induced by the phytohormone jasmonic acid (JA). How JA-mediated induction of these trichome-associated chemical defenses depends on the leaf developmental stage and correlates with resistance against herbivory is unknown. We showed that application of JA reduced thrips-associated damage, however the amplitude of this response was reduced in the fully developed leaves compared to those still developing. Although JA increased type-VI trichome densities in all leaf developmental stages, as well as JA-inducible defensive proteins, these increases were stronger in developing leaves. Remarkably, the concentration of trichome-derived volatiles was induced by JA to a larger degree in developing leaves than in fully developed leaves. In fully developed leaves, the increase in trichome-derived volatiles was explained by an enhanced production per trichome, while in developing leaves this was mainly caused by increases in type-VI trichome densities. Together, we showed that JA-mediated induction of trichome density and chemistry depends on leaf development stage, and it might explain the degree of thrips-associated leaf damage in tomato.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2018.08.007DOI Listing

Publication Analysis

Top Keywords

fully developed
16
developed leaves
12
developing leaves
12
type glandular
8
trichome density
8
derived volatiles
8
jasmonic acid
8
volatiles induced
8
ja-mediated induction
8
depends leaf
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!