Potential xanthine oxidase (XOD) inhibitors in Lagotis brevituba were captured by using affinity and ultrafiltration. The structures of the captured components were identified by ultra-performance liquid chromatography coupled with Q-TOF mass spectrometry (UPLC-Q-TOF-MS). The binding intensity and binding mechanism between the captured components and XOD were analyzed by using molecular docking software Autodock 4.2. A total of 17 compounds were identified, including 9 flavonoids, 5 phenolic acids and 3 triterpenes. Molecular docking results showed that all the captured components could be spontaneously bound with XOD mainly via hydrogen bond, Van der Waals' force and hydrophobic interaction. From the perspective of binding energy and scoring function, the collected fractions all had potential prospects for XOD inhibitors, and the flavonoid luteolin-3',7 glucuronide had the best effect. The results also showed that affinity and ultrafiltration, ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and molecular docking technology can provide a powerful tool for the analysis of XOD inhibitor components in natural products.

Download full-text PDF

Source
http://dx.doi.org/10.19540/j.cnki.cjcmm.20180702.005DOI Listing

Publication Analysis

Top Keywords

captured components
16
molecular docking
16
lagotis brevituba
8
xod inhibitors
8
affinity ultrafiltration
8
ultra-performance liquid
8
captured
5
components
5
xod
5
[research xod
4

Similar Publications

The admixture model is widely applied to estimate and interpret population structure among individuals. Here we consider a "standard admixture" model that assumes the admixed populations are unrelated and also a generalized model, where the admixed populations themselves are related via coancestry (or covariance) of allele frequencies. The generalized model yields a potentially more realistic and substantially more flexible model that we call "super admixture".

View Article and Find Full Text PDF

To enhance enterprises' interactive exploration capabilities for unstructured chart data, this paper proposes a multimodal chart question-answering method. Facing the challenge of recognizing curved and irregular text in charts, we introduce Gaussian heatmap encoding technology to achieve character-level precise text annotation. Additionally, we combine a key point detection algorithm to extract numerical information from the charts and convert it into structured table data.

View Article and Find Full Text PDF

Background And Objectives: Aging in the Right Place (AIRP), the process of occupying housing that meets one's unique preferences and needs, is a critical component of aging well. Homelessness in later life compromises AIRP. This qualitative study examined the factors that informed housing options before, during, and after episodes of homelessness in later life and the indicators of AIRP that those options embodied.

View Article and Find Full Text PDF

Design of an improved graph-based model for real-time anomaly detection in healthcare using hybrid CNN-LSTM and federated learning.

Heliyon

December 2024

Department of Computer Science & Engineering, K L E F Deemed To Be University, Green Fields, Vaddeswaram, Guntur (dt), Andhra Pradesh, 521230, India.

Real-time monitoring and anomaly detection are essential in healthcare to ensure safe conditions for patients and maintain the integrity of medical data samples. The majority of existing systems, despite improvements in healthcare technologies, cannot capture the spatial and temporal patterns of multimodal data simultaneously, process high Volume data in real-time, and ensure the privacy of patients' identity effectively. In this work, we handle these limitations by proposing a complete approach that uses state-of-the-art deep learning and data processing architectures to realize resilient anomaly detection in healthcare systems.

View Article and Find Full Text PDF

This study utilizes flow cytometry (FCM) to evaluate the high nucleic acid (HNA) and low nucleic acid (LNA) content of intact cells for monitoring bacterial dynamics in drinking water treatment and supply systems. Our findings indicate that chlorine and nutrients differently impact components of bacterial populations. HNA bacteria, characterized by high metabolic rates, quickly react to nutrient alterations, making them suitable indicators of growth under varying water treatment and supply conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!