Molecular Tunnels in Enzymes and Thermophily: A Case Study on the Relationship to Growth Temperature.

Microorganisms

Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, IRNAS-CSIC, Avda. Reina Mercedes 10, 41702 Sevilla, Spain.

Published: October 2018

Developments in protein expression, analysis and computational capabilities are decisively contributing to a better understanding of the structure of proteins and their relationship to function. Proteins are known to be adapted to the growth rate of microorganisms and some microorganisms (named (hyper)thermophiles) thrive optimally at high temperatures, even above 100 °C. Nevertheless, some biomolecules show great instability at high temperatures and some of them are universal and required substrates and cofactors in multiple enzymatic reactions for all (both mesophiles and thermophiles) living cells. Only a few possibilities have been pointed out to explain the mechanisms that thermophiles use to successfully thrive under high temperatures. As one of these alternatives, the role of molecular tunnels or channels in enzymes has been suggested but remains to be elucidated. This study presents an analysis of channels in proteins (i.e., substrate tunnels), comparing two different protein types, glutamate dehydrogenase and glutamine phosphoribosylpyrophosphate amidotransferase, which are supposed to present a different strategy on the requirement for substrate tunnels with low and high needs for tunneling, respectively. The search and comparison of molecular tunnels in these proteins from microorganisms thriving optimally from 15 °C to 100 °C suggested that those tunnels in (hyper)thermophiles are required and optimized to specific dimensions at high temperatures for the enzyme glutamine phosphoribosylpyrophosphate amidotransferase. For the enzyme glutamate dehydrogenase, a reduction of empty spaces within the protein could explain the optimization at increasing temperatures. This analysis provides further evidence on molecular channeling as a feasible mechanism in hyperthermophiles with multiple relevant consequences contributing to better understand how they live under those extreme conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6313320PMC
http://dx.doi.org/10.3390/microorganisms6040109DOI Listing

Publication Analysis

Top Keywords

high temperatures
16
molecular tunnels
12
contributing better
8
100 °c
8
substrate tunnels
8
glutamate dehydrogenase
8
glutamine phosphoribosylpyrophosphate
8
phosphoribosylpyrophosphate amidotransferase
8
high
5
temperatures
5

Similar Publications

The optimal method for three-dimensional thermal imaging within cells involves collecting intracellular temperature responses while simultaneously obtaining corresponding 3D positional information. Current temperature measurement techniques based on the photothermal properties of quantum dots face several limitations, including high cytotoxicity and low fluorescence quantum yields. These issues affect the normal metabolic processes of tumor cells.

View Article and Find Full Text PDF

Plague is a rare, potentially fatal flea-borne zoonosis endemic in the western United States. A previous model described interannual variation in human cases based on temperature and lagged precipitation. We recreated this model in northeastern Arizona (1960-1997) to evaluate its capacity to predict recent cases (1998-2022).

View Article and Find Full Text PDF

Rational Design of Prussian Blue Analogues for Ultralong and Wide-Temperature-Range Sodium-Ion Batteries.

J Am Chem Soc

January 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China.

Architecting Prussian blue analogue (PBA) cathodes with optimized synergistic bimetallic reaction centers is a paradigmatic strategy for devising high-energy sodium-ion batteries (SIBs); however, these cathodes usually suffer from fast capacity fading and sluggish reaction kinetics. To alleviate the above problems, herein, a series of early transition metal (ETM)-late transition metal (LTM)-based PBA (Fe-VO, Fe-TiO, Fe-ZrO, Co-VO, and Fe-Co-VO) cathode materials have been conveniently fabricated via an "acid-assisted synthesis" strategy. As a paradigm, the FeVO-PBA (FV) delivers a superb rate capability (148.

View Article and Find Full Text PDF

Correlation of Phase Structure, Defect Relaxation, and Microwave Dielectric Properties in Low-Loss MgTiO Ceramic Systems.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

Low-loss microwave dielectrics are of significant importance for the miniaturization and integration of microwave devices. In this paper, the ceramics of nominal composition MgTiO ( = 3-6) are synthesized, and the correlations among their phase compositions, defect behaviors, and microwave dielectric properties are systematically investigated. The analyses indicate that the MgTiO ceramics are a biphasic system consisting of hexagonal ilmenite-structured MgTiO and cubic spinel-structured MgTiO.

View Article and Find Full Text PDF

Symmetry-breaking spin-state transitions in two of three isostructural salts of MnIII spin-crossover cations, [MnIII(3-OMe-5-NO2-sal2323)]+, with heavy anions are reported. The ReO4-  salt undergoes two-step spin crossover which is coupled with a re-entrant symmetry-breaking structural phase transition between a high temperature phase (S = 2, C2/c), an intermediate ordered phase (S = 1/S = 2, P21/c), and a low temperature phase (S = 1, C2/c). The AsF6-  complex undergoes an abrupt transition between a high temperature phase (S = 2, C2/c) and a low temperature ordered phase (S = 1/S = 2, P-1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!