A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PiT1/Slc20a1 Is Required for Endoplasmic Reticulum Homeostasis, Chondrocyte Survival, and Skeletal Development. | LitMetric

PiT1/Slc20a1 Is Required for Endoplasmic Reticulum Homeostasis, Chondrocyte Survival, and Skeletal Development.

J Bone Miner Res

INSERM, Unité mixte de Recherche (UMR) 1229, Regenerative Medicine and Skeleton (RMeS), Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, ONIRIS, Université de Nantes, Nantes, France.

Published: February 2019

During skeletal mineralization, the sodium-phosphate co-transporter PiT1Slc20a1 is assumed to meet the phosphate requirements of bone-forming cells, although evidence is missing. Here, we used a conditional gene deletion approach to determine the role of PiT1 in growth plate chondrocytes. We show that PiT1 ablation shortly after birth generates a rapid and massive cell death in the center of the growth plate, together with an uncompensated endoplasmic reticulum (ER) stress, characterized by morphological changes and increased Chop, Atf4, and Bip expression. PiT1 expression in chondrocytes was not found at the cell membrane but co-localized with the ER marker ERp46, and was upregulated by the unfolded protein response cascade. In addition, we identified the protein disulfide isomerase (Pdi) ER chaperone as a PiT1 binding partner and showed that PiT1 ablation impaired Pdi reductase activity. The ER stress induced by PiT1 deficiency in chondrocytes was associated with intracellular retention of aggrecan and vascular endothelial growth factor A (Vegf-A), which was rescued by overexpressing a phosphate transport-deficient mutant of PiT1. Our data thus reveal a novel, Pi-transport independent function of PiT1, as a critical modulator of ER homeostasis and chondrocyte survival during endochondral ossification. © 2018 American Society for Bone and Mineral Research.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.3609DOI Listing

Publication Analysis

Top Keywords

endoplasmic reticulum
8
homeostasis chondrocyte
8
chondrocyte survival
8
pit1
8
growth plate
8
pit1 ablation
8
pit1/slc20a1 required
4
required endoplasmic
4
reticulum homeostasis
4
survival skeletal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!