Loss of vascular pericytes has long been associated with the onset of diabetic retinopathy; however, mechanisms contributing to pericyte dropout are not understood. Notch3 has been implicated in pericyte stability and survival, and linked to vascular integrity. Notch3 mutant mice exhibit progressive loss of retinal pericytes. Given that diabetic retinopathy is associated with pericyte loss, we sought to determine whether perturbation of Notch3 signaling contributes to diabetes-induced pericyte dropout and capillary degeneration. We utilized a pericyte-expressed LacZ transgene (XlacZ4) to examine pericyte loss in retinas of a type I diabetic mouse model (Ins2Akita) and Notch3-deficient mice. Notch3 null animals showed a dramatic loss of the LacZ marker by 8 weeks of age, while Ins2Akita diabetic and Notch3 heterozygous mice exhibited a much slower and subtler loss of LacZ. Although combined Notch3 heterozygosity in Ins2Akita diabetic animals did not show further deficits, the trypsin digest method revealed that Notch3 haploinsufficiency increased the formation of acellular capillaries in diabetic mice. Our data further indicate that Notch signaling is blunted in diabetic retinas and in cells exposed to hyperglycemia. These results are the first to demonstrate an association between Notch3 signaling, pericyte loss, and diabetic retinopathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280662PMC
http://dx.doi.org/10.1159/000493151DOI Listing

Publication Analysis

Top Keywords

pericyte loss
16
diabetic retinopathy
12
diabetes-induced pericyte
8
loss
8
diabetic
8
pericyte dropout
8
notch3
8
notch3 signaling
8
loss lacz
8
ins2akita diabetic
8

Similar Publications

Perifoveal vascular anomalous complex and telangiectatic capillaries: An overview of two entities potentially sharing a common pathophysiology.

Surv Ophthalmol

January 2025

School of Medicine, Vita-Salute San Raffaele University, Milan, Italy; Division of head and neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. Electronic address:

Focal capillary ectasia in the macular region can manifest in distinct clinical scenarios, which can be categorized into two main entities: perifoveal vascular anomalous complex (PVAC) and telangiectatic capillaries (TelCaps). PVAC represents a primary, idiopathic condition, whereas TelCaps occur secondary to underlying vascular disorders, including diabetic macular edema and retinal vein occlusion. We provide a comprehensive analysis of these two entities, encompassing their clinical presentations, multimodal imaging findings, histological evidence, and differential diagnosis from other retinal microvascular abnormalities, such as Type 1 macular telangiectasia, adult-onset Coats disease, Type 3 macular neovascularization in age-related macular degeneration, and retinal arterial macroaneurysms.

View Article and Find Full Text PDF

The COVID-19 pandemic has profoundly affected human health, yet the mechanisms underlying its impact on metabolic and vascular systems remain incompletely understood. Clinical evidence suggests that SARS-CoV-2 directly disrupts vascular homeostasis, with perfusion abnormalities observed in various tissues. The pancreatic islet, a key endocrine mini-organ reliant on its microvasculature for optimal function, may be particularly vulnerable.

View Article and Find Full Text PDF
Article Synopsis
  • Empagliflozin may reduce the risk of diabetic retinopathy (DR) by preventing the loss of retinal pericytes, but its effectiveness compared to DPP4 inhibitors in patients with type 2 diabetes (T2D) is not well established.
  • A study was conducted using U.S. insurance claims data from 2014 to 2019, focusing on adults with T2D who were newly prescribed either empagliflozin or a DPP4 inhibitor, and looking at the incidence of nonproliferative DR and its progression.
  • Results showed that among matched patient pairs, empagliflozin's impact on the rates of incident DR and progression was analyzed, with significant data collected over an average
View Article and Find Full Text PDF

Inhibition of Angiopoietin-2 rescues sporadic brain arteriovenous malformations by reducing pericyte loss.

Angiogenesis

December 2024

Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China.

Brain arteriovenous malformations (bAVMs) are a major cause of hemorrhagic stroke in children and young adults. These lesions are thought to result from somatic KRAS/BRAF mutations in brain endothelial cells (bECs). In this study, we introduce a new bAVM model by inducing a brain endothelial-specific Braf mutation using the Slc1o1c1(BAC)-CreER driver line.

View Article and Find Full Text PDF

IL-1β-induced pericyte dysfunction with a secretory phenotype exacerbates retinal microenvironment inflammation via Hes1/STAT3 signaling pathway.

Int Immunopharmacol

January 2025

Xiamen Diabetes Institute, Fujian Province Key Laboratory of Translational Research for Diabetes, Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China. Electronic address:

Retinal pericytes are mural cells surrounding capillaries to maintain the integrity of blood-retina barrier and regulate vascular behaviors. Pericyte loss has been considered as the hallmark of diabetic retinopathy (DR), which is a major complication of diabetes and the leading cause of blindness in adults. However, the precise function of pericytes in regulating the retinal microenvironment and the underlying mechanism remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!