Transcranial Magnetic Stimulation (TMS) excites populations of neurons in the stimulated cortex, and the resulting activation may spread to connected brain regions. The distributed cortical response can be recorded with electroencephalography (EEG). Since TMS also stimulates peripheral sensory and motor axons and generates a loud "click" sound, the TMS-evoked EEG potentials (TEPs) reflect not only neural activity induced by transcranial neuronal excitation but also neural activity due to somatosensory and auditory processing. In 17 healthy young individuals, we systematically assessed the contribution of multisensory peripheral stimulation to TEPs using a TMS-compatible EEG system. Real TMS was delivered with a figure-of-eight coil over the left para-median posterior parietal cortex or superior frontal gyrus with the coil being oriented perpendicularly or in parallel to the target gyrus. We also recorded the EEG responses evoked by realistic sham stimulation over the posterior parietal and superior frontal cortex, mimicking the auditory and somatosensory sensations evoked by real TMS. We applied state-of-the-art procedures to attenuate somatosensory and auditory confounds during real TMS, including the placement of a foam layer underneath the coil and auditory noise masking. Despite these precautions, the temporal and spatial features of the cortical potentials evoked by real TMS at the prefrontal and parietal site closely resembled the cortical potentials evoked by realistic sham TMS, both for early and late TEP components. Our findings stress the need to include a peripheral multisensory control stimulation in the design of TMS-EEG studies to enable a dissociation between truly transcranial and non-transcranial components of TEPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2018.10.052 | DOI Listing |
Heliyon
December 2024
Department of Medicine, Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
In early-stage Alzheimer's disease (AD) amyloid-β (Aβ) deposition can induce neuronal hyperactivity, thereby potentially triggering activity-dependent neuronal secretion of phosphorylated tau (p-tau), ensuing tau aggregation and spread. Therefore, cortical excitability is a candidate biomarker for early AD detection. Moreover, lowering neuronal excitability could potentially complement strategies to reduce Aβ and tau buildup.
View Article and Find Full Text PDFSci Rep
January 2025
School of Computer Science and Technology, Yibin University, Yibin, 644000, China.
Personalized tourism has recently become an increasingly popular mode of travel. Effective personalized route recommendations must consider numerous complex factors, including the vast historical trajectory of tourism, individual traveler preferences, and real-time environmental conditions. However, the large temporal and spatial spans of trajectory data pose significant challenges to achieving high relevance and accuracy in personalized route recommendation systems.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland.
State-of-the-art navigated transcranial magnetic stimulation (nTMS) systems can display the TMS coil position relative to the structural magnetic resonance image (MRI) of the subject's brain and calculate the induced electric field. However, the local effect of TMS propagates via the white-matter network to different areas of the brain, and currently there is no commercial or research neuronavigation system that can highlight in real time the brain's structural connections during TMS. This lack of real-time visualization may overlook critical inter-individual differences in brain connectivity and does not provide the opportunity to target brain networks.
View Article and Find Full Text PDFBrain Stimul
December 2024
Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA. Electronic address:
Background: Transcranial magnetic stimulation (TMS) interventions could feasibly treat stroke-related motor impairments, but their effects are highly variable. Brain state-dependent TMS approaches are a promising solution to this problem, but inter-individual variation in lesion location and oscillatory dynamics can make translating them to the poststroke brain challenging. Personalized brain state-dependent approaches specifically designed to address these challenges are needed.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
The magnetic acceleration noise (MAN) that stems from the eddy current dissipation of a test mass (TM) serves as an important source of noise for space inertial sensors. Given the problem that the eddy current dissipation magnetic acceleration noise (ECDMAN) of a cubic TM defies analytical solutions, an analytical model of ECDMAN for a spherical TM, which has the same volume as the cubic TM, is systematically derived on the basis of the principles of electromagnetism and the fluctuation-dissipation theorem, and this model can be used as an approximate analytical model for the evaluation of this noise term. Based on the approximate analytical model, with the TM of the LISA Pathfinder (LPF) as the research object, this paper obtains a modification coefficient using the approach of combining the analytical method with the finite element method (FEM), and establishes a semi-analytical model of ECDMAN for the cubic TM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!