P53 in kidney injury and repair: Mechanism and therapeutic potentials.

Pharmacol Ther

Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification in Hunan, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Charlie Norwood VA Medical Center, Medical College of Georgia at Augusta University, Augusta, GA, USA. Electronic address:

Published: March 2019

Acute kidney injury (AKI) is a major kidney disease with poor clinical outcome. Besides its acute consequence of high mortality, AKI may also contribute significantly to the occurrence and progression of chronic kidney diseases (CKD). Accumulating evidence has demonstrated that maladaptive and incomplete kidney repair after AKI leads to the development of renal fibrosis and, ultimately, CKD. p53, a well-known tumor suppressor, plays a critical role in AKI and subsequent kidney repair through the regulation of various cell biologic processes, including apoptosis, cell cycle arrest, and autophagy. Despite the notable progress in deciphering the involvement of p53 in kidney injury and repair, the underlying mechanisms of p53 in these pathological processes remain largely unknown. Further investigation in this area is essential for the application of p53 as therapeutic target to prevent and treat AKI or impede its progression to CKD. In this review, we summarize the recent advances in understanding p53 regulation of AKI and kidney repair, pinpoint the potential of p53 as a therapeutic target, and present future research interests and directions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pharmthera.2018.10.013DOI Listing

Publication Analysis

Top Keywords

kidney injury
12
kidney repair
12
p53 kidney
8
injury repair
8
p53 therapeutic
8
therapeutic target
8
p53
7
kidney
7
aki
6
repair
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!