Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
MHC class I-specific reagents such as fluorescently-labeled multimers (e.g., tetramers) have greatly advanced the understanding of CD8+ T cells under normal and diseased states. However, recombinant MHC class I components (comprising MHC class I heavy chain and β2 microglobulin) are usually produced in bacteria following a lengthy purification protocol that requires additional non-covalent folding steps with exogenous peptide for complete molecular assembly. We have provided an alternative and rapid approach to generating soluble and fully-folded MHC class I molecules in eukaryotic cell lines (such as CHO cells) using a Sleeping Beauty transposon system. Importantly, this method culminates in generating stable cell lines that reliably secrete epitope-defined MHC class I molecules into the tissue media for convenient purification and eventual biotinylation/multimerization. Additionally, MHC class I components are covalently linked, providing the opportunity to produce a diverse set of CD8+ T cell-specific reagents bearing peptides with various affinities to MHC class I.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6322931 | PMC |
http://dx.doi.org/10.1016/j.jim.2018.10.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!