HP1B is a euchromatic Drosophila HP1 homolog with links to metabolism.

PLoS One

Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America.

Published: April 2019

Heterochromatin Protein 1 (HP1) proteins are an important family of chromosomal proteins conserved among all major eukaryotic lineages. While HP1 proteins are best known for their role in heterochromatin, many HP1 proteins function in euchromatin as well. As a group, HP1 proteins carry out diverse functions, playing roles in the regulation of gene expression, genome stability, chromatin structure, and DNA repair. While the heterochromatic HP1 proteins are well studied, our knowledge of HP1 proteins with euchromatic distribution is lagging behind. We have created the first mutations in HP1B, a Drosophila HP1 protein with euchromatic function, and the Drosophila homolog most closely related to mammalian HP1α, HP1β, and HP1γ. We find that HP1B is a non-essential protein in Drosophila, with mutations affecting fertility and animal activity levels. In addition, animals lacking HP1B show altered food intake and higher body fat levels. Gene expression analysis of animals lacking HP1B demonstrates that genes with functions in various metabolic processes are affected primarily by HP1B loss. Our findings suggest that there is a link between the chromatin protein HP1B and the regulation of metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197686PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205867PLOS

Publication Analysis

Top Keywords

hp1 proteins
24
hp1
8
drosophila hp1
8
gene expression
8
animals lacking
8
lacking hp1b
8
hp1b
7
proteins
7
hp1b euchromatic
4
drosophila
4

Similar Publications

Protective immune responses require close interactions between conventional (Tconv) and regulatory T cells (Treg). The extracellular mediators and signaling events that regulate the crosstalk between these CD4 T cell subsets have been extensively characterized. However, how Tconv translate Treg-dependent suppressive signals at the chromatin level remains largely unknown.

View Article and Find Full Text PDF

Heterochromatin Protein Activates the Amylase Expression Pathway and Its Application to Recombinant Protein Expression in Penicillium oxalicum.

Curr Microbiol

January 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China.

Remodelling regulatory pathways to directionally increase the efficiency of specific promoters in chassis cells is an effective strategy for the rational construction of expression systems. However, the repeated utilization of one regulator to modify the host cell to improve expression motif efficiency has a limited effect. Therefore, it is preferable to identify new regulatory factors to activate specific pathways and thus further improve the efficiency of target elements.

View Article and Find Full Text PDF

The recruitment of Heterochromatin Protein 1 (HP1) partners is essential for heterochromatin assembly and function, yet our knowledge regarding their organization in heterochromatin remains limited. Here we show that interactors engage the Drosophila HP1 (HP1a) dimer through a degenerate and expanded form of the previously identified PxVxL motif, which we now term HP1a Access Codes (HACs). These HACs reside in disordered regions, possess high conservation among Drosophila homologs, and contain alternating hydrophobic residues nested in a cluster of positively charged amino acids.

View Article and Find Full Text PDF

Novel role of zinc-finger protein 518 in heterochromatin formation on α-satellite DNA.

Nucleic Acids Res

December 2024

Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan.

Aneuploidy is caused by chromosomal missegregation and is frequently observed in cancers and hematological diseases. Therefore, it is important to understand the molecular mechanisms underlying chromosomal segregation. The centromere's intricate structure is crucial for proper chromosome segregation, with heterochromatin at the pericentromeric α-satellites playing a key role.

View Article and Find Full Text PDF

In shrimp aquaculture, enhancing health and disease resistance is crucial for sustainable production. This study investigates the pioneering effects of astaxanthin-enriched microalgal powder from Haematococcus pluvialis (HP) on Pacific white shrimp (Litopenaeus vannamei), focusing on growth efficiency, body composition, immune and antioxidant responses, intestinal health, histopathology, gene expression, and resistance against Fusarium solani. Shrimp (initial weight 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!