Background: Chronic infection with Trypanosoma cruzi leads to a constant stimulation of the host immune system. Monocytes, which are recruited in response to inflammatory signals, are divided into classical CD14hiCD16-, non-classical CD14loCD16+ and intermediate CD14hiCD16+ subsets. In this study, we evaluated the frequencies of monocyte subsets in the different clinical stages of chronic Chagas disease in comparison with the monocyte profile of seronegative heart failure subjects and seronegative healthy controls. The effect of the anti-parasite drug therapy benznidazole on monocyte subsets was also explored.
Methodology/principal Findings: The frequencies of the different monocyte subsets and their phenotypes were measured by flow cytometry. Trypanosoma cruzi-specific antibodies were quantified by conventional serological tests. T. cruzi-infected subjects with mild or no signs of cardiac disease and patients suffering from dilated cardiomyopathy unrelated to T. cruzi infection showed increased levels of non-classical CD14loCD16+ monocytes compared with healthy controls. In contrast, the monocyte profile in T. cruzi-infected subjects with severe cardiomyopathy was skewed towards the classical and intermediate subsets. After benznidazole treatment, non-classical monocytes CD14loCD16+ decreased while classical monocytes CD14hiCD16-increased.
Conclusions/significance: The different clinical stages of chronic Chagas disease display distinct monocyte profiles that are restored after anti-parasite drug therapy. T. cruzi-infected subjects with severe cardiac disease displayed a profile of monocytes subsets suggestive of a more pronounced inflammatory environment compared with subjects suffering from heart failure not related to T. cruzi infection, supporting that parasite persistence might also alter cell components of the innate immune system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6211766 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0006887 | DOI Listing |
Rofo
January 2025
Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Acta Parasitol
January 2025
Edificio D, Facultad de Ciencias Químicas, LADISER Inmunología y Biología Molecular, Universidad Veracruzana, Orizaba, Veracruz, México.
Despite being the most relevant and critical option for managing Chagas disease, pharmacological therapy is currently limited by the availability of only two drugs, benznidazole and nifurtimox. Their effectiveness is further restricted in the chronic phase of the infection, as they induce severe side effects and require prolonged treatment. Additionally, the use of these drugs can lead to the emergence of substantial resistance problems, compounded by the potential natural resistance of some parasite isolates.
View Article and Find Full Text PDFJCI Insight
January 2025
Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, United States of America.
Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi with clinical presentations ranging from asymptomatic to cardiac and/or gastrointestinal complications. The mechanisms of pathogenesis are still poorly understood, but T. cruzi strain diversity may be associated with disease progression.
View Article and Find Full Text PDFPathogens
December 2024
Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez (INCICH), Mexico City 14080, Mexico.
Chronic chagasic cardiomyopathy is the most severe clinical manifestation of Chagas disease, which affects approximately seven million people worldwide. Latin American countries bear the highest burden, with the greatest morbidity and mortality rates. Currently, diagnostic methods do not provide information on the risk of progression to severe stages of the disease.
View Article and Find Full Text PDFLife (Basel)
November 2024
Division of Nephrology, Hospital Universitário Clementino Fraga Filho, Federal University of Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco, 255-Cidade Universitária, Rio de Janeiro 21941-617, RJ, Brazil.
Renal osteodystrophy (ROD) represents histological bone changes in patients with chronic kidney disease and is classified according to turnover and mineralization. This cross-sectional study evaluates several bone biomarkers and their ability to discriminate turnover and mineralization defects in hemodialysis (HD) patients. Bone-specific [BSAP] and total [tAP] alkaline phosphatase, procollagen-1 N-terminal propeptide [P1NP], C-terminal cross-linking telopeptide [CTX], intact [iPTH] and whole [wPTH] parathyroid hormone, sclerostin [SOST], fibroblast growth factor 23 [FGF-23], vitamin D, osteoprotegerin [OPG], and receptor activator of nuclear factor κB ligand [RANKL] were collected before the bone biopsy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!