Small Molecule Condensin Inhibitors.

ACS Infect Dis

Department of Chemistry and Biochemistry , University of Oklahoma, 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States.

Published: December 2018

Condensins play a unique role in orchestrating the global folding of the chromosome, an essential cellular process, and contribute to human disease and bacterial pathogenicity. As such, they represent an attractive and as yet untapped target for diverse therapeutic interventions. We describe here the discovery of small molecule inhibitors of the Escherichia coli condensin MukBEF. Pilot screening of a small diversity set revealed five compounds that inhibit the MukBEF pathway, two of which, Michellamine B and NSC260594, affected MukB directly. Computer-assisted docking suggested plausible binding sites for the two compounds in the hinge and head domains of MukB, and both binding sites were experimentally validated using mutational analysis and inspection of NSC260594 analogs. These results outline a strategy for the discovery of condensin inhibitors, identify druggable binding sites on the protein, and describe two small molecule inhibitors of condensins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467689PMC
http://dx.doi.org/10.1021/acsinfecdis.8b00222DOI Listing

Publication Analysis

Top Keywords

small molecule
12
binding sites
12
condensin inhibitors
8
inhibitors condensins
8
molecule inhibitors
8
small
4
molecule condensin
4
inhibitors
4
condensins play
4
play unique
4

Similar Publications

Breast cancer remains the leading cause of mortality among women with cancer. This article delves into the intricate relationship between breast cancer and cancer stem cells (CSCs), emphasizing advanced methods for their identification and isolation. The key isolation techniques, such as the mammosphere formation assay, surface marker identification, Side Population assay, and Aldehyde Dehydrogenase assay, are critically examined.

View Article and Find Full Text PDF

Quantitative Measurement of Molecular Permeability to a Synthetic Bacterial Microcompartment Shell System.

ACS Synth Biol

January 2025

Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702, United States.

Naturally evolved and synthetically designed forms of compartmentalization benefit encapsulated function by increasing local concentrations of substrates and protecting cargo from destabilizing environments and inhibitors. Crucial to understanding the fundamental principles of compartmentalization are experimental systems enabling the measurement of the permeability rates of small molecules. Here, we report the experimental measurement of the small-molecule permeability of a 40 nm icosahedral bacterial microcompartment shell.

View Article and Find Full Text PDF

Discovery of non-retinoid compounds that suppress the pathogenic effects of misfolded rhodopsin in a mouse model of retinitis pigmentosa.

PLoS Biol

January 2025

Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America.

Pathogenic mutations that cause rhodopsin misfolding lead to a spectrum of currently untreatable blinding diseases collectively termed retinitis pigmentosa. Small molecules to correct rhodopsin misfolding are therefore urgently needed. In this study, we utilized virtual screening to search for drug-like molecules that bind to the orthosteric site of rod opsin and improve its folding and trafficking.

View Article and Find Full Text PDF

This study aimed to evaluate the efficacy of pyrotinib, an orally administered small molecule tyrosine kinase inhibitor, combined with neoadjuvant chemotherapy in treating patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Pyrotinib works by inhibiting the HER2 signaling pathway, thereby preventing tumor cell growth. This single-arm clinical trial aimed to assess the total pathological complete response (tpCR; ypT0/is and ypN0) rate as the primary endpoint.

View Article and Find Full Text PDF

Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!