Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Free radicals and carbonyls produced by electronic cigarettes (e-cigs) have the potential to inflict oxidative stress. Recently, Juul e-cigs have risen drastically in popularity; however, there is no data on nicotine and oxidant yields from this new e-cig design.
Methods: Aerosol generated from four different Juul flavors was analyzed for carbonyls, nicotine, and free radicals. The e-liquids were analyzed for propylene glycol (PG) and glycerol (GLY) concentrations. To determine the effects of e-liquid on oxidant production, Juul pods were refilled with nicotine-free 30:70 or 60:40 PG:GLY with or without citral.
Results: No significant differences were found in nicotine (164 ± 41 µg/puff), free radical (5.85 ± 1.20 pmol/puff), formaldehyde (0.20 ± 0.10 µg/puff), and acetone (0.20 ± 0.05 µg/puff) levels between flavors. The PG:GLY ratio in e-liquids was ~30:70 across all flavors with GLY being slightly higher in tobacco and mint flavors. In general, when Juul e-liquids were replaced with nicotine-free 60:40 PG:GLY, oxidant production increased up to 190% and, with addition of citral, increased even further.
Conclusions: Juul devices produce free radicals and carbonyls, albeit, at levels substantially lower than those observed in other e-cig products, an effect only partially because of a low PG:GLY ratio. Nicotine delivery by these devices was as high as or higher than the levels previously reported from cigarettes.
Implications: These findings suggest that oxidative stress and/or damage resulting from Juul use may be lower than that from cigarettes or other e-cig devices; however, the high nicotine levels are suggestive of a greater addiction potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182768 | PMC |
http://dx.doi.org/10.1093/ntr/nty221 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!