Three-Dimensional Printed Photoluminescent Polymeric Waveguides.

ACS Appl Mater Interfaces

Department of Applied Science and Technology , Politecnico di Torino , Corso Duca degli Abruzzi 24 , Torino 10129 , Italy.

Published: November 2018

AI Article Synopsis

  • - The study introduces a new 3D printing technique that uses light to create complex objects without hindering the materials' ability to print.
  • - A specialized photoluminescent dye is incorporated into the 3D printing process to produce precise waveguides and splitters that can direct light.
  • - By copolymerizing the dye with the polymer during printing, the resulting structures can sense solvent polarity, making them useful for certain sensor applications.

Article Abstract

In this work, we propose an innovative strategy for obtaining functional objects employing a light-activated three-dimensional (3D) printing process without affecting the materials' printability. In particular, a dye is a necessary ingredient in a formulation for a digital light processing 3D printing method to obtain precise and complex structures. Here, we use a photoluminescent dye specifically synthesized for this purpose that enables the production of 3D printed waveguides and splitters able to guide the luminescence. Moreover, copolymerizing the dye with the polymeric network during the printing process, we are able to maintain the solvatochromic properties of the dye toward different solvents in the printed structures, enabling the development of solvents' polarity sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b16036DOI Listing

Publication Analysis

Top Keywords

printing process
8
three-dimensional printed
4
printed photoluminescent
4
photoluminescent polymeric
4
polymeric waveguides
4
waveguides work
4
work propose
4
propose innovative
4
innovative strategy
4
strategy obtaining
4

Similar Publications

Clinically, infectious bone defects represent a significant threat, leading to osteonecrosis, severely compromising patient prognosis, and prolonging hospital stays. Thus, there is an urgent need to develop a bone graft substitute that combines broad-spectrum antibacterial efficacy and bone-inductive properties, providing an effective treatment option for infectious bone defects. In this study, the precision of digital light processing (DLP) 3D printing technology was utilized to construct a scaffold, incorporating zinc oxide nanoparticles (ZnO-NPs) modified barium titanate (BT) with hydroxyapatite (HA), resulting in a piezoelectric ceramic scaffold designed for the repair of infected bone defects.

View Article and Find Full Text PDF

The advent of bionic skin sensors represents a significant leap forward in the realm of wearable health monitoring technologies. Existing bionic skin technologies face several limitations, including complex and expensive manufacturing processes, low wearing comfort, and challenges in achieving comfortable real-time health monitoring. These shortcomings hinder the widespread adoption and practical utility of bionic skin in various applications.

View Article and Find Full Text PDF

Unlabelled: Human umbilical cord-derived mesenchymal stromal cells (UC-MSCs), which can be prepared in advance and are presumed to be advantageous for nerve regeneration, have potential as a cell source for Bio 3D conduits. The purpose of this study was to evaluate the nerve regeneration ability of Bio 3D conduits made from UC-MSCs using a rat sciatic nerve defect model.

Methods: A Bio 3D conduit was fabricated using a Bio 3D printer by placing UC-MSC spheroids into thin needles according to predesigned 3D data.

View Article and Find Full Text PDF

Vaginal Orthosis After Native Tissue Reconstructive Surgery: Design and Phase 0.

Urogynecology (Phila)

December 2024

From the Division of Urogynecology and Reconstructive Pelvic Surgery, University of Alabama at Birmingham, Birmingham, AL.

Importance: Pelvic organ prolapse recurrence following native tissue repair occurs with composite failure rates of 9-19% within 12 months, predominantly involving apical/anterior compartments. Objective The objective of this study was to develop a novel vaginal orthosis (NVO) device prototype through an iterative design process based on investigator and user feedback.

Study Design: The NVO was designed based on pelvic floor biomechanical principles to mitigate unopposed intra-abdominal pressure of the anterior vagina by absorbing and redirecting intra-abdominal forces to the levator ani and tailored to accommodate postoperative vaginal caliber and axis.

View Article and Find Full Text PDF

The convergence of nanotechnology and tissue engineering has paved the way for innovative cancer treatments that leverage the unique light absorption properties of nanomaterials. Indeed, photothermal therapy (PTT) and photodynamic therapy (PDT) utilize nanomaterials to convert near-infrared light into therapeutic energy for cancer treatment. This study focuses on the application of poly(lactic--glycolic acid) (PLGA) scaffolds, enhanced by graphene oxide, TiCT MXene, and TiS transition metal dichalcogenides for PDT and PTT treatments evaluated within 3D-bioprinted breast cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: