Background: In the current study, we present an integrated in silico cheminformaticsmolecular docking approach to screen and test potential therapeutic compounds against viruses. Fluoroquinolones have been shown to inhibit HCV replication by targeting HCV NS3-helicase. Based on this observation, we hypothesized that natural analogs of fluoroquinolones will have similar or superior inhibitory potential while having potentially fewer adverse effects.
Methods: To screen for natural analogs of fluoroquinolones, we devised an integrated in silico Cheminformatics-Molecular Docking approach. We used 17 fluoroquinolones as bait reference, to screen large databases of natural analogs. 10399 natural compounds and their derivatives were retrieved from the databases. From these compounds, molecules bearing physicochemical similarities with fluoroquinolones were analyzed using a cheminformatics-docking approach.
Results: From the 10399 compounds screened using our cheminformatics approach, only 20 compounds were found to share physicochemical similarities with fluoroquinolones, while the remaining 10379 compounds were physiochemically different from fluoroquinolones. Molecular docking analysis showed 32 amino acids in the HCV NS3 active site that were most frequently targeted by fluoroquinolones and their natural analogues, indicating a functional similarity between the two groups of compounds.
Conclusion: This study describes a speedy and inexpensive approach to complement drug discovery and design against viral agents. The in silico analyses we used here can be employed to shortlist promising compounds/putative drugs that can be further tested in wet-lab.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1871526518666181019162359 | DOI Listing |
World J Gastroenterol
January 2025
Department of Internal Medicine, Mixed Hospital of Laghouat, Laghouat Faculty of Medicine, Amar Telidji University, Laghouat 03000, Algeria.
Liver cancer remains a significant global health challenge, characterized by high incidence and mortality rates. Despite advancements in medical treatments, the prognosis for liver cancer patients remains poor, highlighting the urgent need for novel therapeutic approaches. Traditional Chinese medicine (TCM), particularly (CB), has shown promise in addressing this need due to its multi-target therapeutic mechanisms.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Department of Haematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China.
Background: Methicillin-resistant (MRSA) poses a significant challenge in clinical environments due to its resistance to standard antibiotics. Protein A (SpA), a crucial virulence factor of MRSA, undermines host immune responses, making it an attractive target for vaccine development. This study aimed to identify potential epitopes within SpA that could elicit robust immune responses, ultimately contributing to the combat against multidrug-resistant (MDR) MRSA.
View Article and Find Full Text PDFBiofilm
June 2025
Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal.
Bacterial biofilms formed by and pose significant challenges in treating cystic fibrosis (CF) airway infections due to their resistance to antibiotics. New therapeutic approaches are urgently needed to treat these chronic infections. This study aimed to investigate the antibiofilm potential of various plant extracts, specifically targeting mucoid and small colony variants of and and strains.
View Article and Find Full Text PDFFront Chem
January 2025
Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China.
Introduction: To design effective small molecule inhibitors targeting the immune checkpoint PD-1/PD-L1 and to explore their inhibitory activity.
Methods: In this paper, a total of 69 PD-1/PD-L1 inhibitors with the same backbone were searched through opendatabases, and their docking mechanism with PD-L1 protein was investigatedby molecular docking method, and the active conformation of the inhibitors was explored. The biological activity of the four newly designed inhibitors was also evaluated using ELISA.
Reprod Sci
January 2025
Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China.
Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic disorder affecting women of reproductive age. Oxidative stress (OS) is suggested to play a significant role in the development of PCOS. Using antioxidants to reduce OS and maintain a healthy balance in the body could be a novel treatment approach for PCOS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!