The study of biological histamine (HA) requires probes capable of ratiometric photoluminescence detection of HA. We discovered that a monocycloplatinated complex having two solvento ligands ([Pt(2-(2-naphthyl)quinolinate)(NCCH)]ClO) could produce ratiometric phosphorescence responses to HA in aerated aqueous solutions buffered to pH 7.4. The HA response was characterized with a hypsochromic shift of an emission peak wavelength from 635 to 567 nm. The corresponding phosphorescence intensity ratio (i.e., I/ I) increased from 0.26 to 1.90. Spectroscopic and spectrometric investigations indicated an occurrence of spontaneous displacement of the labile CHCN ligands with HA. An independently prepared HA adduct supported this notion. The ratiometric phosphorescence responses to HA were highly tolerant to other biological stimuli, including changes in pH and the presence of biometals and biological Lewis bases such as amino acids, nucleosides, biothiols, neurotransmitters, and small molecular metabolites. Of note was the high selectivity toward HA over common biological ligands, including histidine, cysteine, and homocysteine, which was ascribed to tighter HA binding. Our phosphorescence measurements employing Boc-protected derivatives of HA suggested that the bis-chelate motif involving imidazolyl and terminal amino groups was crucial for eliciting the ratiometric phosphorescence signaling. Finally, the bioimaging utility of the HA probe was validated using RAW 264.7 macrophages that were exogenously supplemented with HA or stimulated with thapsigargin to enrich intracellular HA. Ratiometric phosphorescence imaging microscopy experiments demonstrated the ability of the probe for monitoring intracellular HA uptake. In addition, photoluminescence lifetime imaging microscopy techniques could be applied for visualization of HA within the RAW 264.7 cells, because the HA binding elongated the photoluminescence lifetime. Our study demonstrated the promising utility of inner-sphere interactions of phosphorescent Pt(II) complexes for detection of biological HA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.8b02612DOI Listing

Publication Analysis

Top Keywords

ratiometric phosphorescence
20
phosphorescence responses
12
raw 2647
8
imaging microscopy
8
photoluminescence lifetime
8
phosphorescence
7
ratiometric
6
biological
5
monocycloplatinated solvento
4
solvento complex
4

Similar Publications

Isostructured lanthanide-Brønsted acidic ionic liquid coordination polymers, {[Ln(CHNO)(HO)]Cl} (LnIMDC(HO), Ln = Eu, Gd, or Tb, CHNO = [IMDC]) and {[EuTb(CHNO)(HO)]Cl} (EuTbIMDC(HO))), have been synthesized using 1,3-bis(carboxymethyl) imidazolium chloride ([HIMDC]Cl) as linkers. LnIMDC(HO) (Ln = Eu or Tb) and EuTbIMDC(HO) exhibit good temperature sensing performance over a wide temperature range with maximum sensitivities of 2.73%·K (392 K) and 2.

View Article and Find Full Text PDF

Modulating carbon dots from aggregation-caused quenching to aggregation-induced emission and applying them in sensing, imaging and anti-counterfeiting.

Talanta

January 2025

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China. Electronic address:

Aggregation Induced Emission Carbon Dots (AIE-CDs) address the problem of conventional CDs being quenched in the solid-state. However, there are still challenges in comprehending the luminescence mechanism. This work proposed a strategy for preparing green, yellow, and near-infrared CDs by modifying the functional groups on the precursor from hydroxyl and amino to p-methylenediamine, in which electronic supply capacity determined the redshift.

View Article and Find Full Text PDF

Luminescence thermometry presents precise remote temperature measurement capabilities but faces significant challenges in real-world applications, primarily stemming from the calibration's susceptibility to environmental factors. External factors can compromise accuracy, necessitating resilient measurement protocols to ensure dependable temperature (T) readings across various settings. We explore a novel three-dimensional (3D) approach based on time-gated (t) luminescence thermometric parameters, (,), employing physical mixtures of surface-engineered carbon dots (CDs) based on dibenzoylmethane and rhodamine B.

View Article and Find Full Text PDF

A new class of oxygen-sensing dual-emitting cyclometalated Ir(III) complexes is described. They function as ratiometric sensors that combine the blue fluorescence from coumarin as a self-referenced internal standard with yellow to red phosphorescence from bis-cyclometalated iridium complexes. The compounds have phosphorescence quantum yields up to 15%, lifetimes ranging from 0.

View Article and Find Full Text PDF

Ratiometric Imaging Detection of Amyloid-β Fibrils by a Dual-Emissive Tris-Heteroleptic Ruthenium Complex.

Inorg Chem

September 2024

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Two dual fluorescent/phosphorescent tris-heteroleptic mononuclear Ru(ΙΙ) complexes ( and ) were designed and applied in amyloid-β (Aβ) sensing. These complexes have a general formula of [Ru(phen)(dppz)()](PF), where is (2-pyrazinyl)(2-pyridyl)(methyl)amine (H-) with different substituents (-OMe for , -H for ), phen is 1,10-phenanthroline, and dppz is dipyridophenazine, respectively. Compared with the previously reported ratiometric probe with a di(pyrid-2-yl)(methyl)amine ligand, complex can be employed for not only ratiometric emissive detection of Aβ aggregation but also ratiometric imaging detection of Aβ fibrils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!