Background: Isolated cardiac arrhythmia due to a variant in CACNA1C is of recent knowledge. Most reports have been of singleton cases or of quite small families, and estimates of penetrance and expressivity have been difficult to obtain. We here describe a large pedigree, from which such estimates have been calculated.

Methods: We studied a five-generation family, in which a CACNA1C variant c.2573G>A p.Arg858His co-segregates with syncope and cardiac arrest, documenting electrocardiographic data and cardiac symptomatology. The reported patients/families from the literature with CACNA1C gene variants were reviewed, and genotype-phenotype correlations are drawn.

Results: The range of phenotype in the studied family is wide, from no apparent effect, through an asymptomatic QT interval prolongation on electrocardiography, to episodes of presyncope and syncope, ventricular fibrillation, and sudden death. QT prolongation showed inconsistent correlation with functional cardiology. Based upon analysis of 28 heterozygous family members, estimates of penetrance and expressivity are derived.

Conclusions: These estimates of penetrance and expressivity, for this specific variant, may be useful in clinical practice. Review of the literature indicates that individual CACNA1C variants have their own particular genotype-phenotype correlations. We suggest that, at least in respect of the particular variant reported here, "arrhythmogenic channelopathy" may be a more fitting nomenclature than long QT syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382452PMC
http://dx.doi.org/10.1002/mgg3.476DOI Listing

Publication Analysis

Top Keywords

penetrance expressivity
16
estimates penetrance
12
cacna1c variant
8
genotype-phenotype correlations
8
cacna1c
5
variant
5
penetrance
4
expressivity r858h
4
r858h cacna1c
4
variant five-generation
4

Similar Publications

Modifiers and their impact on inherited retinal diseases: a review.

Ophthalmic Genet

January 2025

Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA.

Background: The phenotypic variability of inherited conditions can be due to several factors including environmental, epigenetic, and genetic. One of those genetic factors is the presence of modifying loci which alter the phenotypic expression of a primary disease or phenotype-causing variant. Modifiers are known to affect penetrance, dominance, expressivity, and pleiotropy of disease.

View Article and Find Full Text PDF

Beyond the "Dominant" and "Recessive" Patterns of Inheritance.

Int J Mol Sci

December 2024

Laboratory of Medical Biology-Genetics, Faculty of Medicine, School of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece.

This study aimed to investigate whether genes with different modes of inheritance differ in the presence of promoter-enriched CGI loci. For each autosomal chromosome, the author searched for variations in the total number of diseases' phenotypes with autosomal dominant (AD) and recessive (AR) inheritance for a list of promoter-poor CGI (CGI-) and promoter-enriched CGI (CGI+) genes using the OMIM database. Then, the CGI- and CGI+ genes displaying random allelic or bi-allelic expression were examined.

View Article and Find Full Text PDF

Novel Intragenic and Genomic Variants Highlight the Phenotypic Variability in -Related Disease.

Genes (Basel)

December 2024

Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.

: Disruption of results in microphthalmia with linear skin lesions (MLS) characterized by microphthalmia/anophthalmia, corneal opacity, aplastic skin lesions, variable central nervous system and cardiac anomalies, intellectual disability, and poor growth in heterozygous females. Structural variants consisting of chromosomal rearrangements or deletions are the most common variant type, but a small number of intragenic variants have been reported. : Exome sequencing identified variants affecting .

View Article and Find Full Text PDF

: The gene encodes for the catalytic α subunit of Cytoplasmic phenylalanine-tRNA synthetase (FARS1), an essential enzyme for protein biosynthesis in transferring its amino acid component to tRNAs. Biallelic pathogenic variants have been associated with a multisystemic condition, characterized by variable expressivity and incomplete penetrance. Here, we report the case of an 11 year-old girl presenting interstitial lung disease, supratentorial leukoencephalopathy with brain cysts, hepatic dysfunction, hypoalbuminemia, skin and joint hyperlaxity, growth retardation, and dysmorphic features.

View Article and Find Full Text PDF

Monoallelic expression can govern penetrance of inborn errors of immunity.

Nature

January 2025

Columbia Center for Genetic Errors of Immunity, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.

Article Synopsis
  • Inborn errors of immunity (IEIs) are genetic disorders that increase the risk of infections, autoimmunity, and other health issues, and often show incomplete penetrance despite being caused by single gene mutations.
  • This study examines how autosomal random monoallelic expression (aRMAE)—where only one allele of a gene is actively expressed—contributes to the variability in disease outcomes among individuals within families with IEIs.
  • The findings reveal that specific gene expression patterns related to aRMAE can influence clinical phenotypes, suggesting that understanding both genetic and expression variations is crucial for analyzing the impact of monogenic disorders.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!