Efficient Metal-Free Electrocatalysts from N-Doped Carbon Nanomaterials: Mono-Doping and Co-Doping.

Adv Mater

Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.

Published: March 2019

N-doped carbon nanomaterials have rapidly grown as the most important metal-free catalysts in a wide range of chemical and electrochemical reactions. This current report summarizes the latest advances in N-doped carbon electrocatalysts prepared by N mono-doping and co-doping with other heteroatoms. The structure-performance relationship of these materials is subsequently rationalized and perspectives on developing more efficient and sustainable electrocatalysts from carbon nanomaterials are also suggested.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201805121DOI Listing

Publication Analysis

Top Keywords

n-doped carbon
12
carbon nanomaterials
12
mono-doping co-doping
8
efficient metal-free
4
metal-free electrocatalysts
4
electrocatalysts n-doped
4
carbon
4
nanomaterials mono-doping
4
co-doping n-doped
4
nanomaterials rapidly
4

Similar Publications

The electrochemical reduction reaction (RR) of CO to high value multicarbon products is highly desirable for carbon utilization. Dual transition metal atoms dispersed by N-doped graphene are able to be highly efficient catalysts for this process due to the synergy of the bimetallic sites for C-C coupling. In this work, we screened homonuclear dual-atom catalysts dispersed by N-doped graphene to investigate the potential in CO reduction to C products by employing density functional theory calculations.

View Article and Find Full Text PDF

Unveiling the Proton-Electron Transfer Pathway in Zn-Embedded N-Doped Carbon Catalyst for Enhanced CO Electroreduction.

ACS Appl Mater Interfaces

December 2024

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China.

Proton-electron transfer (PET) processes play a pivotal role in numerous electrochemical reactions; yet, effectively harnessing them remains a formidable challenge. Consequently, unveiling the PET pathway is imperative to elucidate the factors influencing the efficiency and selectivity of small molecule electrochemical conversion. In this study, a Zn-NC model catalyst with N and C vacancies was synthesized using a hydriding method to investigate the universal impact of PET on CO electroreduction.

View Article and Find Full Text PDF

Sensitive "On-Off" Fluorescent Sensor From N-Doped Carbon Dots for Fe Detection and Anticounterfeiting Applications.

Luminescence

December 2024

Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China.

Herein, a kind of N-doped fluorescent carbon dots (N-CDs) were prepared by using melamine and carboxymethyl cellulose (CMC) as precursors through a straightforward hydrothermal method. The designed sensor displayed a uniform nanoscale distribution, excellent hydrophilicity, and strong fluorescence emission with a fluorescence quantum yield of 37.98%.

View Article and Find Full Text PDF

Design of hierarchical hollow nanoheterostructure materials through interfacial and defect engineering is an innovative approach for achieving optimal charge separation dynamics and photon harvesting efficiency. Herein, we have described a facile technique to fabricate hollow MOF-derived C, N-doped-CoO (C, N-CoO) dodecahedral particles enwrapped with MgInS nanosheets for enhanced N reduction performance. ZIF-67 was initially used as a sacrificial template to prepare hollow C, N-CoO using a carbonization route followed by low-temperature calcination treatment.

View Article and Find Full Text PDF

To improve bioavailability, enhance the solubility and stability of the hydrophobic drug curcumin, nanoparticles such as carbon quantum dots (CQDs) are unique choices. In this study, we present a simple, cost-effective, and eco-friendly method for synthesizing nitrogen-doped carbon quantum dots (N-CQDs) and their application in the efficient delivery of hydrophobic drugs curcumin into live cancer cells. The N-CQDs produced in this study exhibit excellent water solubility, remarkable stability, and high biocompatibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!