The benzoylurea chitin synthesis inhibitor teflubenzuron, widely used against sea lice in North Atlantic aquaculture, may pose an environmental threat to non-targeted crustaceans. In this experiment, laboratory acclimated pink shrimp (Pandalus montagui), a species found in fjords with Atlantic salmon farming, were exposed to dietary teflubenzuron for 46 days (control; low dose: 0.01 μg/g; high dose: 0.1 μg/g). The exposure doses represent 0.1% and 1% of a standard treatment dose for Atlantic salmon. Mortality and prevalence of deformities, pharmacokinetics, oxidative stress and transcriptomic and metabolomic profiling were used to assess the response to teflubenzuron exposure. Mortality in the high-dose group was 25% (five of 20 individuals). No control or low-dose group shrimps died. Phenotypic responses,i.e., leg deformities (0 control, 6 low, 8 high) and cloudy eyes (0 control, 3 low, 7 high), were observed in some surviving shrimps (control n = 15, low n = 17, high n = 15). Accumulated levels of teflubenzuron in shrimps from the high-dose group ranged from 4.7 to 369 ng/g wet weight. Transcriptomic profiling showed very few significantly altered genes in the exposed shrimps. Teflubenzuron-induced changes to the metabolome pointed to well-known effects of benzoylurea agents, with reduced levels of N-acetylglucosamine indicating an effect on chitin synthesis. The metabolomic profiling showed that teflubenzuron exposure was associated with reduced energy metabolism. Some metabolites pointed to increased necrosis and/or bacterial overgrowth in the teflubenzuron-exposed shrimps. In conclusion, this study shows that teflubenzuron causes phenotypic effects in P. montagui exposed to 0.1% of the treatment dose given to Atlantic salmon.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jat.3739DOI Listing

Publication Analysis

Top Keywords

atlantic salmon
12
control low
12
oxidative stress
8
stress transcriptomic
8
transcriptomic metabolomic
8
pink shrimp
8
shrimp pandalus
8
pandalus montagui
8
montagui exposed
8
chitin synthesis
8

Similar Publications

Aquaculture is one of the world's fastest-growing sectors in food production but with multiple challenges related to animal handling and infections. The disease caused by infectious salmon anemia virus (ISAV) leads to outbreaks of local epidemics, reducing animal welfare, and causing significant economic losses. The composition of feed has shifted from marine ingredients such as fish oil and fish meal towards a more plant-based diet causing reduced levels of eicosapentaenoic acid (EPA).

View Article and Find Full Text PDF

Salmonid rickettsial septicemia (SRS) is a critical sanitary problem in the Chilean aquaculture industry since it induces the highest mortality rate in salmonids among all infectious diseases. , a facultative intracellular bacterium, is the biological agent of SRS. In Chile, two genogroups of , designated as LF-89 and EM-90, have been identified.

View Article and Find Full Text PDF

In many eukaryotes, meiotic recombination occurs preferentially at discrete sites, called recombination hotspots. In various lineages, recombination hotspots are located in regions with promoter-like features and are evolutionarily stable. Conversely, in some mammals, hotspots are driven by PRDM9 that targets recombination away from promoters.

View Article and Find Full Text PDF

Non-classical MHC class I genes which, compared to classical MHC class I, are typically less polymorphic and have more restricted expression patterns are attracting interest because of their potential to regulate immune responses to various pathogens. In salmonids, among the numerous non-classical MHC class I genes identified to date, L lineage genes, including Sasa- and , are differentially induced in response to microbial challenges. In the present study, we show that while transcription of both and are induced in response to SAV3 infection the transcriptional induction patterns are distinct for each gene.

View Article and Find Full Text PDF

Two short-term feeding trials were conducted on , with the interaction between dietary zinc (Zn) and fat level in trial 1 and with the interaction between dietary Zn and n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) in trial 2, focusing on postprandial plasma parameters, intestinal Zn and fat uptake and transport. After 4-week feeding interventions, samples were collected at different postprandial time points, ranging from 0 to 36/38 h after feeding. Results showed that increased Zn level in feed significantly increased the postprandial plasma Zn level in trial 1 (8-9°C).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!