We present terahertz time-domain spectroscopy (THz-TDS) to explore the conformational dynamics of thermally induced and photoinduced isomerization of azobenzene. The essence of the method is that isomerization of azobenzene proceeds via large structural changes in the molecule, while the THz response is sensitive to these changes. We experimentally demonstrate that the THz spectra of azobenzene show remarkable variations upon heating and irradiation, and as such quantitatively recorded and identified THz spectroscopy can be used to monitor the isomerization process. Specifically, the measured THz spectra clearly reveal that the rate of thermal-isomerization from cis-to-trans in non-polar solvents is faster than that in polar solvents, and an about 6-fold acceleration of the rate could be achieved when Au NPs were introduced as a catalyst into azobenzenes. Moreover, we provide evidence that the temperature and Au NP catalyst do not have an obvious influence on the photoinduced isomerization of azobenzene. The presented example illustrates the power of the THz-TDS method to open up a novel avenue for exploring molecular dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp04570d | DOI Listing |
Soft Matter
January 2025
Department of Physics, Central University of Karnataka, Kadaganchi, Kalaburagi, Karnataka-585367, India.
The isomerization kinetics of a liquid crystalline azobenzene dimer, comprising cyanoazobenzene and naphthalene (NAZ6), were investigated at the air-water interface. The Langmuir monolayers of NAZ6 in both its and states were analyzed using surface manometry techniques. The results revealed that NAZ6 molecules in the -state displayed the coexistence of a disordered liquid-expanded phase and an ordered liquid-condensed phase, whereas no such phase transition was observed in the -state.
View Article and Find Full Text PDFMolecules
January 2025
Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Effectively regulating the rotary motions of molecular rotors through external stimuli poses a tremendous challenge. Herein, a new type of molecular rotor based on azobenzene-strapped mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complex is reported. Electronic absorption and H NMR spectra manifested the reversible isomerization of the rotor between the configuration and the configuration.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
Reaction and interaction dynamics of azobenzene-tethered DNA (photoresponsive DNA) with T7 RNA polymerase (T7RNAP) were studied after photoisomerization of azobenzene from the - to -forms using the transient grating (TG) and time-resolved fluorescence polarization techniques. Two types of photoresponsive DNA were examined: AzoPBD, tethered at the protein binding site, and AzoTATA, tethered at the unwinding site. A diffusion change was observed after photoexcitation of -AzoPBD within 1 ms, and this change is explained in terms of a structural change from a bent to an extended conformation upon the -to- photoisomerization.
View Article and Find Full Text PDFPhotochem Photobiol Sci
January 2025
CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal.
Solvatochromism exhibited by azobenzene-4-sulfonyl chloride (here abbreviated as Azo-SCl) has been investigated in a series of non-polar, polar-aprotic and polar-protic solvents. The UV-vis spectra of Azo-SCl exhibit two long-wavelength bands, observed at 321-330 nm (band-I) and 435-461 nm (band-II), which are ascribed to the π*-π (S ← S) and π*-n (S ← S) transitions, respectively. The shorter wavelength band indicates a reversal in solvatochromism, from negative to positive solvatochromism, for a solvent with a dielectric constant of 32.
View Article and Find Full Text PDFChem Asian J
January 2025
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
The reversible photoisomerization of azobenzene (AZB) and its derivatives has been applied across various fields. Developing discrete AZB-functionalized organometallic cages is essential for manufacturing functional materials. In this work, we designed and fabricated a series of three-dimensional, hexaazobenzene-terminated poly-NHC-based (NHC=N-heterocyclic carbene) complexes [M(A)](BF) and [M(B)](BF) (M = Ag, Au).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!