Formation of 53BP1 foci and ATM activation under oxidative stress is facilitated by RNA:DNA hybrids and loss of ATM-53BP1 expression promotes photoreceptor cell survival in mice.

F1000Res

CABIMER (Centro Andaluz de Biología Molecular y Medicina Regenerativa), (FPS) Fundacion Progreso y Salud, Sevilla, Andalucia, 41092, Spain.

Published: November 2019

Photoreceptors, light-sensing neurons in retina, are central to vision. Photoreceptor cell death (PCD) is observed in most inherited and acquired retinal dystrophies. But the underlying molecular mechanism of PCD is unclear. Photoreceptors are sturdy neurons that survive high oxidative and phototoxic stress, which are known threats to genome stability. Unexpectedly, DNA damage response in mice photoreceptors is compromised; mainly due to loss of crucial DNA repair proteins, ATM and 53BP1. We tried to understand the molecular function of ATM and 53BP1 in response to oxidative stress and how suppression of DNA repair response in mice retina affect photoreceptor cell survival. We use the state of art cell biology methods and structure-function analysis of mice retina. RNA:DNA hybrids (S9.6 antibody and Hybrid-binding domain of RNaseH1) and DNA repair foci (gH2AX and 53BP1) are quantified by confocal microscopy, in retinal sections and cultured cell lines. Oxidative stress, DNA double strand break, RNaseH1 expression and small-molecule kinase-inhibitors were used to understand the role of ATM and RNA:DNA hybrids in DNA repair. Lastly, retinal structure and function of ATM deficient mice, in Retinal degeneration 1 (Pde6brd1) background, is studied using Immunohistochemistry and Electroretinography. Our work has three novel findings: firstly, both human and mice photoreceptor cells specifically accumulate RNA:DNA hybrids, a structure formed by re-hybridization of nascent RNA with template DNA during transcription. Secondly, RNA:DNA-hybrids promote ataxia-telangiectasia mutated (ATM) activation during oxidative stress and 53BP1-foci formation during downstream DNA repair process. Thirdly, loss of ATM -in murine photoreceptors- protract DNA repair but also promote their survival.  We propose that due to high oxidative stress and accumulation of RNA:DNA-hybrids in photoreceptors, expression of ATM is tightly regulated to prevent PCD. Inefficient regulation of ATM expression could be central to PCD and inhibition of ATM-activation could suppress PCD in retinal dystrophy patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6171737PMC
http://dx.doi.org/10.12688/f1000research.15579.1DOI Listing

Publication Analysis

Top Keywords

dna repair
24
oxidative stress
20
rnadna hybrids
16
photoreceptor cell
12
atm
9
dna
9
atm activation
8
activation oxidative
8
cell survival
8
mice photoreceptors
8

Similar Publications

Background: There is a growing interest in exploring the biological characteristics of nanoparticles and exploring their potential applications. However, there is still a lack of research into the potential genotoxicity of fullerene derivatives and their impact on gene expression in human cells. In this study, we investigated the effects of a water-soluble fullerene derivative, C60[C6H4SCH2COOK]5H (F1), on human embryonic lung fibroblasts (HELF).

View Article and Find Full Text PDF

Background: Radon, a colorless and odorless radioactive gas, poses serious health risks. It is the second leading cause of lung cancer and notably increases lung cancer risk in smokers. Although previous epidemiological studies have mainly examined lung cancer rates in miners, the effects of radon on genomic stability and its molecular mechanisms are not well understood.

View Article and Find Full Text PDF

Background: Platinum chemotherapy (CT) remains the backbone of systemic therapy for patients with small-cell lung cancer (SCLC). The nucleotide excision repair (NER) pathway plays a central role in the repair of the DNA damage exerted by platinum agents. Alteration in this repair mechanism may affect patients' survival.

View Article and Find Full Text PDF

Mismatch repair, p53, and L1 cell adhesion molecule status influence the response to chemotherapy in advanced and recurrent endometrial cancer.

BMC Cancer

December 2024

Department of Obstetrics and Gynecology, Institution of Women's Medical Life Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea.

Objective: This study aimed to identify the recurrence and survival rates according to the mismatch repair (MMR), p53, and L1 cell adhesion molecule (L1CAM) status in patients with advanced and recurrent endometrial cancer (EC) receiving systemic chemotherapy.

Methods: This single-center retrospective cohort study included chemotherapy-naïve patients with advanced-stage (III/IV) or recurrent EC between January 2015 and June 2022 (n = 156), who were administered chemotherapy as adjuvant therapy or first-line palliative treatment. MMR and p53 status were assessed, and L1CAM was tested using immunohistochemistry in the p53-wild and MMR-proficient (p53wt/pMMR) group.

View Article and Find Full Text PDF

Background: Systemic chemotherapy constitutes an indispensable component of breast cancer (BC) management, where therapeutic drug combinations such as anthracyclines, platinum compounds, and taxanes form the cornerstone of standard treatment protocols. Although DNA repair genes are pivotal in cancer susceptibility, their specific roles in mediating acute or chronic toxicity outcomes induced by chemotherapy remain undetermined. Consequently, this study was planned  to elucidate the impact of polymorphisms in base excision repair (BER) genes, including XRCC1, XRCC2, XRCC3, APE1, and hOGG1, on treatment response and toxicity outcomes in BC patients undergoing paclitaxel and doxorubicin-based chemotherapy within an Indian population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!