The sonic hedgehog (Shh) signaling pathway has been reported to protect cells against hypoxia/reoxygenation (H/R) injury; however, the role of Shh and relevant molecular mechanisms remain unclear. In the present study, the rat cardiomyoblast cell line H9C2 was subjected to hypoxia and serum-starvation for 4 h. Cells were subsequently reoxygenated using 95% O and 5% CO. Reverse transcription-quantitative polymerase chain reaction was performed to quantify the expression of Shh mRNA, while cell apoptosis was assessed using flow cytometry. Caspase-3 activity and p53 expression were measured by western blotting and an MTT assay was subsequently used to assess cell viability. In addition, reactive oxygen species levels were measured using dichlorofluorescein and H/R-induced changes in the activation of superoxide dismutase, catalase, phosphorylated-endothelial nitric oxide synthase, phosphorylated-protein kinase B (Akt) and mammalian target of rapamycin activation were assessed using western blotting. H/R treatment decreased the cell viability of H9C2 cells, but activated endogenous Shh signaling. The activation of Shh signaling protected H9C2 myocardial cells from H/R-induced apoptosis and restored cell viability. In the present study, Shh signaling was demonstrated to serve a protective role against H/R by activating the phosphoinositol 3-kinase (PI3K)/Akt pathway and promoting the expression of anti-oxidant enzymes to ameliorate oxidative stress. In summary, Shh signaling attenuated H/R-induced apoptosis through via the PI3K/Akt pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176152PMC
http://dx.doi.org/10.3892/etm.2018.6678DOI Listing

Publication Analysis

Top Keywords

shh signaling
20
cell viability
12
sonic hedgehog
8
h9c2 myocardial
8
cell apoptosis
8
western blotting
8
h/r-induced apoptosis
8
pi3k/akt pathway
8
shh
7
signaling
6

Similar Publications

Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MB). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MB cases and that expression is uniquely upregulated in infantile MB tumors.

View Article and Find Full Text PDF

Teleost fish, such as Poecilia latipinna, exhibit remarkable regenerative capabilities, making them excellent models for studying tissue regrowth. They regenerate body parts like the tail fin through epimorphic regeneration, involving wound healing, blastema formation (a pool of proliferative cells), and tissue differentiation. Bone Morphogenetic Protein (BMP) and Fibroblast Growth Factor (FGF) signaling pathways play crucial roles in this process, but their specific functions during blastema formation remain unclear.

View Article and Find Full Text PDF

Amniote skulls are diverse in shape and skeletal composition, which is the basis of much adaptive diversification within this clade. Major differences in skull shape are established early in development, at a critical developmental interval spanning the initial outgrowth and fusion of the facial processes. In birds, this is orchestrated by domains of Shh and Fgf8 expression, known as the frontonasal ectodermal zone (FEZ).

View Article and Find Full Text PDF

Cortisol regulates neonatal lung development via Smoothened.

Respir Res

January 2025

National Clinical Research Center for Aging and Medicine, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.

Background: Neonatal respiratory distress syndrome (NRDS), one of the main causes of neonatal death, is clinically characterized by progressive dyspnea and cyanosis 1 to 2 h after birth. Corticosteroids are commonly used to prevent NRDS in clinical. However, the protective mechanism of the corticosteroids remains largely unclear.

View Article and Find Full Text PDF

In the mammalian ureters, the lamina propria presents as a prominent layer of connective tissue underneath the urothelium. Despite its important structural and signaling functions, little is known how the lamina propria develops. Here, we show that in the murine ureter, the lamina propria arises at late fetal stages and massively increases by fibrocyte proliferation and collagen deposition after birth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!