Atorvastatin upregulates apolipoprotein M expression via attenuating LXRα expression in hyperlipidemic apoE-deficient mice.

Exp Ther Med

Department of Cardiovascular Surgery, The First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215006, P.R. China.

Published: November 2018

Apolipoprotein M (apoM) is a recently identified human apolipoprotein that is associated with the formation of high-density lipoprotein (HDL). Studies have demonstrated that statins may affect the expression of apoM; however, the regulatory effects of statins on apoM are controversial. Furthermore, the underlying mechanisms by which statins regulate apoM remain unclear. In the present study, and models were used to investigate whether the anti-atherosclerotic effects of statins are associated with its apoM-regulating effects and the underlying mechanism. Hyperlipidemia was induced by in apolipoprotein E-deficient mice by providing a high-fat diet. Atorvastatin was administered to hyperlipidemic mice and HepG2 cells to investigate its effect on apoM expression. The liver X receptor α (LXRα) agonist T0901317 was also administered together with atorvastatin to hyperlipidemic mice and HepG2 cells. The results revealed that atorvastatin increased apoM expression, which was accompanied with decreased expression of LXRα in the liver of hyperlipidemic apolipoprotein E-deficient mice and HepG2 cells. Additionally, apoM upregulation was inhibited following treatment with T0901317. In summary, atorvastatin exhibited anti-atherosclerotic effects by upregulating apoM expression in hyperlipidemic mice, which may be mediated by the inhibition of LXRα.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176103PMC
http://dx.doi.org/10.3892/etm.2018.6694DOI Listing

Publication Analysis

Top Keywords

hyperlipidemic mice
12
mice hepg2
12
hepg2 cells
12
apom expression
12
expression hyperlipidemic
8
apom
8
effects statins
8
anti-atherosclerotic effects
8
apolipoprotein e-deficient
8
e-deficient mice
8

Similar Publications

The objective of this study was to examine the hypolipidemic effect and potential mechanism of action of green radish polysaccharide (GRP) in hyperlipidemic mice. We found that in mice fed a high-fat diet, supplementing with GRP reduced body weight and liver index, significantly improved serum lipid levels and markers of liver damage, and mitigated oxidative stress and inflammation. Mechanistically, in these hyperlipidemic mice, the size of fat cells was reduced by GRP, and the abnormal accumulation of lipid droplets was reduced.

View Article and Find Full Text PDF

This study explores the therapeutic potential of ω-3 algal oil (rich in DHA) and ω-7 sea buckthorn oil (rich in palmitoleic acid) in addressing hyperlipidemia and associated metabolic disorders. These oils regulate lipid metabolism through the PPARγ-LXRα-ABCA1/ABCG1 signaling pathway, reducing cholesterol accumulation, oxidative stress, and inflammation. In high-fat diet-induced hyperlipidemic mice, supplementation with these oils significantly improved lipid profiles, alleviated hepatic steatosis, and promoted cardiovascular health.

View Article and Find Full Text PDF

Tetrahydroberberrubine improves hyperlipidemia by activating the AMPK/SREBP2/PCSK9/LDL receptor signaling pathway.

Eur J Pharmacol

January 2025

State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China. Electronic address:

Hyperlipidemia is a major risk factor for hypertension, coronary heart disease, diabetes and stroke, triggering an intensified research efforts into its prevention and treatment. Tetrahydroberberrubine (THBru) is a derivative of berberine (BBR) that has been shown to have higher bioavailability and lower toxicity compared to its parent compound. However, its impact on hyperlipidemia has not been fully explored.

View Article and Find Full Text PDF

Hyperlipidemia is a major contributor to metabolic complications and tissue damage, leading to conditions such as liver steatosis, atherosclerosis, and obesity. This study aimed to investigate the effects of aqueous artichoke bract extract (AE) on lipid metabolism, liver antioxidative defense, and liver steatosis in mice fed a high-fat, high-sucrose diet while elucidating the underlying mechanisms. An 8-week study used hyperlipidemic mice treated with AE at daily doses of 100 and 200 mg/kg bw, compared to fenofibrate.

View Article and Find Full Text PDF

Complex metabolic diseases due to overnutrition such as obesity, type 2 diabetes, and fatty liver disease are a major burden on the healthcare system worldwide. Current research primarily focuses on disease endpoints and trying to understand underlying mechanisms at relatively late stages of the diseases, when irreversible damage is already done. However, complex interactions between physiological systems during disease development create a problem regarding how to build cause-and-effect relationships.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!