Stratigraphic accretion of dormant propagules in soil can result in natural archives useful for studying ecological and evolutionary responses to environmental change. Few attempts have been made, however, to use soil-stored seed banks as natural archives, in part because of concerns over nonrandom attrition and mixed stratification. Here, we examine the persistent seed bank of , a foundational brackish marsh sedge, to determine whether it can serve as a resource for reconstructing historical records of demographic and population genetic variation. After assembling profiles of the seed bank from radionuclide-dated soil cores, we germinated seeds to "resurrect" cohorts spanning the 20th century. Using microsatellite markers, we assessed genetic diversity and differentiation among depth cohorts, drawing comparisons to extant plants at the study site and in nearby and more distant marshes. We found that seed density peaked at intermediate soil depths. We also detected genotypic differences among cohorts as well as between cohorts and extant plants. Genetic diversity did not decline with depth, indicating that the observed pattern of differentiation is not due to attrition. Patterns of differentiation within and among extant marshes also suggest that local populations persist as aggregates of small clones, likely reflecting repeated seedling recruitment and low immigration from admixed regional gene pools. These findings indicate that persistent and stratified soil-stored seed banks merit further consideration as resources for reconstructing decadal- to century-long records that can lend insight into the tempo and nature of ecological and evolutionary processes that shape populations over time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6183470PMC
http://dx.doi.org/10.1111/eva.12675DOI Listing

Publication Analysis

Top Keywords

soil-stored seed
12
seed bank
12
genetic variation
8
natural archives
8
ecological evolutionary
8
seed banks
8
genetic diversity
8
extant plants
8
seed
6
century genetic
4

Similar Publications

Predicting the fate of coastal marshes requires understanding how plants respond to rapid environmental change. Environmental change can elicit shifts in trait variation attributable to phenotypic plasticity and act as selective agents to shift trait means, resulting in rapid evolution. Comparably, less is known about the potential for responses to reflect the evolution of trait plasticity.

View Article and Find Full Text PDF

Progressive habitat fragmentation threatens plant species with narrow habitat requirements. While local environmental conditions define population growth rates and recruitment success at the patch level, dispersal is critical for population viability at the landscape scale. Identifying the dynamics of plant meta-populations is often confounded by the uncertainty about soil-stored population compartments.

View Article and Find Full Text PDF

There has been a steady rise in the use of dormant propagules to study biotic responses to environmental change over time. This is particularly important for organisms that strongly mediate ecosystem processes, as changes in their traits over time can provide a unique snapshot into the structure and function of ecosystems from decades to millennia in the past. Understanding sources of bias and variation is a challenge in the field of resurrection ecology, including those that arise because often-used measurements like seed germination success are imperfect indicators of propagule viability.

View Article and Find Full Text PDF

A mechanistic understanding of fire-driven seedling recruitment is essential for effective conservation management of fire-prone vegetation, such as South African fynbos, especially with rare and threatened taxa. The genus Leucadendron (Proteaceae) is an ideal candidate for comparative germination studies, comprising 85 species with a mixture of contrasting life-history traits (killed by fire vs able to resprout; serotinous vs geosporous) and seed morphologies (nutlets vs winged achenes). Individual and combined effects of heat and smoke on seed germination of 40 species were quantified in the laboratory, and Bayesian inference applied to distinguish biologically meaningful treatment effects from non-zero, but biologically trivial, effects.

View Article and Find Full Text PDF

Studies of invasive Australian have shown that many seeds are still produced and accumulate in soil stored seed banks regardless of the presence of seed-targeting biological control agents. This is despite claims of biological control success, although there is generally a lack of data on the seed production of invasive Australian before and after the release of the respective agents. We aimed to quantify seed production and seed survival of invasive Australian currently under biological control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!