It is now routinely possible to generate genomics-scale datasets for nonmodel species; however, many questions remain about how best to use these data for conservation and management. Some recent genomics studies of anadromous Pacific salmonids have reported a strong association between alleles at one or a very few genes and a key life history trait (adult migration timing) that has played an important role in defining conservation units. Publication of these results has already spurred a legal challenge to the existing framework for managing these species, which was developed under the paradigm that most phenotypic traits are controlled by many genes of small effect, and that parallel evolution of life history traits is common. But what if a key life history trait can only be expressed if a specific allele is present? Does the current framework need to be modified to account for the new genomics results, as some now propose? Although this real-world example focuses on Pacific salmonids, the issues regarding how genomics can inform us about the genetic basis of phenotypic traits, and what that means for applied conservation, are much more general. In this perspective, we consider these issues and outline a general process that can be used to help generate the types of additional information that would be needed to make informed decisions about the adequacy of existing conservation and management frameworks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6183503PMC
http://dx.doi.org/10.1111/eva.12687DOI Listing

Publication Analysis

Top Keywords

pacific salmonids
12
life history
12
conservation units
8
genetic basis
8
adult migration
8
migration timing
8
conservation management
8
key life
8
history trait
8
phenotypic traits
8

Similar Publications

Robust discrimination between closely related species of salmon based on DNA fragments.

Anal Bioanal Chem

January 2025

Statistical Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899-8980, USA.

Closely related species of Salmonidae, including Pacific and Atlantic salmon, can be distinguished from one another based on nucleotide sequences from the cytochrome c oxidase sub-unit 1 mitochondrial gene (COI), using ensembles of fragments aligned to genetic barcodes that serve as digital proxies for the relevant species. This is accomplished by exploiting both the nucleotide sequences and their quality scores recorded in a FASTQ file obtained via Next Generation (NextGen) Sequencing of mitochondrial DNA extracted from Coho salmon caught with hook and line in the Gulf of Alaska. The alignment is done using MUSCLE (Muscle 5.

View Article and Find Full Text PDF

Pathogens play a key role in individual function and the dynamics of wild populations, but the link between pathogens and individual performance has rarely been investigated in the wild. Migrating salmonids offer an ideal study system to investigate how infection with pathogens affects performance given that climate change and fish farming portend increasing prevalence of pathogens in wild populations. To test for effects of pathogen burden on the performance of a migrating salmonid, we paired data from individual brown trout tagged with acoustic accelerometer transmitters and gill biopsies to investigate how pathogen infection affected whole animal activity during the spawning migration.

View Article and Find Full Text PDF

The potential risk posed by infectious agents (IAs) associated with netpen aquaculture to wild fishes is determined based on the "release" of IAs from netpens into the environment, the "exposure" of the wild fish to those released agents, and the "consequence" for wild fish experiencing infection by those agents. Information available to characterize these three factors is often lacking, and the occurrence of transmission from aquaculture to wild fish as well as potential consequences of such transmission are difficult to observe. In this study, we utilized environmental DNA (eDNA) to characterize the release of dozens of IAs from, and exposure of Pacific salmon to, Atlantic salmon aquaculture.

View Article and Find Full Text PDF

Ecological features of upriver migration in Kitakami River chum salmon and their connection to aerobic thermal performance.

Conserv Physiol

December 2024

Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.

The physiological performance of ectotherms is influenced by temperature, raising concerns about the impact of global warming on ectotherms. Understanding the relationship between ecologically relevant temperatures and the physiological performance of ectotherms provides a basis for assessing their resilience to changing environments. Absolute aerobic scope (AAS) is a functional metric of the thermal performance of aquatic ectotherms.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored the decline of Pacific salmon and its impact on ecosystems using both Western scientific methods and Indigenous Teslin Tlingit knowledge.
  • Relationships between riparian tree growth and salmon presence were found, highlighting that tree growth benefited from salmon escapement, particularly at salmon-bearing sites.
  • Interviews with local Teslin Tlingit community members indicated that salmon population declines negatively affect local wildlife and human wellbeing, reinforcing the connection between healthy salmon populations and overall ecosystem health.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!