Circadian rhythms in the pathogenesis of gastrointestinal diseases.

World J Gastroenterol

Department of Pediatrics, Obstetrics and Ginecology, University of Valencia, Valencia 46010, Spain.

Published: October 2018

The etiology of digestive pathologies such as irritable bowel syndrome (IBS), inflammatory bowel diseases (IBD) and cancer is not yet fully understood. In recent years, several studies have evidenced circadian variations in mechanisms involved in digestive health. In situations of disturbed circadian rhythms (chronodisruption) where the central clock and the peripheral clocks receive incoherent signals, the synchronicity is lost producing implications for health. This lack of coordination could alter the tissue function and cause long term damage to the organs. Life habits such as sleep, physical exercise, social interaction, and feeding times are determinants for stability and integrity of circadian rhythms. In recent years, experimental and clinical studies have consistently evidenced that the alteration of circadian rhythms is associated with the development of digestive pathologies mainly linked to dismotility or changes in microbiota composition. Likewise, it seems reasonable to deep into the importance of chronodisruption as a factor that may participate in the development of pathologies such as IBS, IBD and digestive cancers. Moreover, life habits respecting circadian rhythms should be promoted for the prevention of these diseases. Further studies will allow us a better understanding of the mechanisms acting at molecular level, and the development of new therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189841PMC
http://dx.doi.org/10.3748/wjg.v24.i38.4297DOI Listing

Publication Analysis

Top Keywords

circadian rhythms
20
digestive pathologies
8
life habits
8
circadian
6
rhythms pathogenesis
4
pathogenesis gastrointestinal
4
gastrointestinal diseases
4
diseases etiology
4
digestive
4
etiology digestive
4

Similar Publications

Circadian Rhythm, Hypoxia, and Cellular Senescence: From Molecular Mechanisms to Targeted Strategies.

Eur J Pharmacol

January 2025

College of Life Science, Yangtze University, Jingzhou 434025, China. Electronic address:

Cellular senescence precipitates a decline in physiological activities and metabolic functions, often accompanied by heightened inflammatory responses, diminished immune function, and impaired tissue and organ performance. Despite extensive research, the mechanisms underpinning cellular senescence remain incompletely elucidated. Emerging evidence implicates circadian rhythm and hypoxia as pivotal factors in cellular senescence.

View Article and Find Full Text PDF

Study Objectives: Both the (ICSD) and the sleep-wake disorders section of the (DSM) emphasize the importance of clinical judgment in distinguishing the normal from the pathological in sleep medicine. The fourth edition of the DSM (DSM-IV, 1994) introduced the clinical significance criterion (CSC) to standardize this judgment and enhance diagnostic reliability.

Methods: This review conducts a theoretical and historical content analysis of CSC presence, frequency, and formulation in the diagnostic criteria of sleep disorders.

View Article and Find Full Text PDF

, the etiological agent of Chagas disease, is a parasite known for its diverse genotypic variants, or Discrete Typing Units (DTUs), which have been associated with varying degrees of tissue involvement. However, aspects such as parasite attachment remain unclear. It has been suggested that the TcI genotype is associated with cardiac infection, the most common involved site in chronic human infection, while TcII is associated with digestive tract involvement.

View Article and Find Full Text PDF

The application of regenerative therapy through stem cell transplantation has emerged as a promising avenue for the treatment of diabetes mellitus (DM). Transplanted tissue homeostasis is affected by disturbances in the clock genes of stem cells. The aim of this study is to investigate the diurnal variation in mitochondrial genes and function after transplantation of adipose-derived mesenchymal stem cells (T2DM-ADSCs) from type 2 diabetic patients into immunodeficient mice.

View Article and Find Full Text PDF

Methamphetamine is a highly addictive stimulant known to cause neurotoxicity, cognitive deficits, and immune dysregulation in the brain. Despite significant research, the molecular mechanisms driving methamphetamine-induced neurotoxicity and glial cell dysfunction remain poorly understood. This study investigates how methamphetamine disrupts glial cell function and contributes to neurodevelopmental and neurodegenerative processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!