Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The esterase B (EstB) from Sphingobium sp. SM42, which was previously reported to be active towards dibutyl phthalate, can cleave some small aromatic ring side chains from cephalosporin derivatives. A new name, de-arenethiolase, has been proposed to represent this activity. We present the in vitro characterization of the activity of purified EstB toward cephalosporin substrates. Interestingly, EstB was highly active against cefoperazone and cefazolin resulting in 83 and 67% decreases in killing zone diameter, respectively. EstB also demonstrated a moderate activity towards ceftriaxone (18%) and cefotaxime (16%) while exhibiting no activity against cephalosporin C and cefixime. HPLC analysis indicated that EstB catalyzed the cleavage of the C-S bond found in cephalosporin derivatives to release the corresponding free aromatic ring side chains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2018.10.078 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!