Purpose: Although it is known that exercise induces angiogenesis, a clear mechanism has remained elusive due to various experimental limitations. This review presents the current status of angiogenesis-related experiments and future directions of experimentation in relation to exercise, aging, and cancer.
Methods: We conducted a PubMed search of the available literature to identify reported exercise related changes of angiogenic factors obtained in vitro using C2C12 cells and endothelial cells, and in vivo using animal experiments and in clinical studies.
Results: Exercise induced angiogenesis under normal conditions. Aging decreased angiogenic factors and increased during exercise. On the other hand, in cancer, the results indicate that angiogenic factors tend to increase in general, and that the effects of exercise need to be studied more. The exact mechanism remains unclear.
Conclusion: The effect of exercise on angiogenesis appears positive. Both resistance and aerobic exercise have positive effects, but many evidences suggest that the effects are more pronounced with aerobic exercise. Further research on the precise mechanism(s) is necessary. It is expected that these studies will include models of aging and cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199487 | PMC |
http://dx.doi.org/10.20463/jenb.2018.0020 | DOI Listing |
J Contemp Dent Pract
September 2024
Department of Periodontics, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia, Phone: +082146474590, e-mail:
Aims: This study investigated the effect of injection of adipose stem cells (ASCs) on the expression of type VII and VIII collagen in Wistar rat's gingiva. Adipose stem cells can modulate the immune system, angiogenesis, wound healing, and extracellular matrix (ECM) remodeling.
Materials And Methods: Ten Wistar rats aged three months were divided into two groups: the treatment group and the control group.
Mol Med Rep
March 2025
Department of Pathology, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece.
Intrauterine growth restriction (IUGR) is the second most common obstetric complication after preterm labor. Appropriate trophoblast differentiation and placental structure, growth and function are key for the maintenance of pregnancy and normal fetal growth, development and survival. Extravillous trophoblast cell proliferation, migration and invasion are regulated by molecules produced by the fetomaternal interface, including autocrine factors produced by the trophoblast, such as insulin‑like growth factor (IGF)‑1.
View Article and Find Full Text PDFiScience
January 2025
Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.
Ischemia and pathological angiogenesis in retinal vascular diseases cause serious vision-related problems. However, the transcriptional regulators of vascular repair remain unidentified. Thus, the factors and mechanisms involved in angiogenesis must be elucidated to develop approaches for restoring normal blood vessels.
View Article and Find Full Text PDFJ Cancer Prev
December 2024
College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea.
Hepatocellular carcinoma (HCC) is the most common and lethal type of primary liver cancer, frequently arising from chronic liver injury and inflammation. Despite treatment advancements, HCC prognosis remains poor, emphasizing the need for effective preventive and therapeutic strategies. This study investigates the hepatoprotective and anti-tumor effects of Hongjam, a steamed freeze-dried silkworm powder, in a diethylnitrosamine (DEN) and thioacetamide (TAA)-induced HCC mouse model.
View Article and Find Full Text PDFDrug Deliv
December 2025
Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain.
Recent studies on head and neck squamous cell carcinoma (HNSCC) tumorigenesis have revealed several dysregulated molecular pathways. The phosphatidylinositol-3-kinase (PI3K) signaling pathway is frequently activated in HNSCC, making it an attractive target for therapies. PHT-427 is a dual inhibitor of PI3K and the mammalian target of AKT/PDK1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!