By feeding 1-methyl-l-tryptophan (1-MT) into cultures of the arthropod-associated fungus Chaetomium globosum TW1-1, three novel cytochalasan alkaloids, termed as armochaetoglosins A-C (1-3), together with five known analogues, namely prochaetoglobosin I (4), chaetoglobosin T (5), chaetoglobosin C (6), armochaetoglobin Y (7), and chaetoglobosin V (8), were isolated and characterized. Their structures including absolute configurations were elucidated by means of NMR spectroscopy, single-crystal X-ray crystallography, and comparison of the experimental electronic circular dichroism (ECD) spectra. Structurally, compounds 1-3 represented the first examples of 1'-N-methyl-chaetoglobosins, which were possibly biosynthesized from the additive 1-MT rather than tryptophan. Additionally, compound 3 showed the highest antibacterial activity against K. pneumoniae and ESBL-E. coli with MIC values of 4.0 μg/mL and 16.0 μg/mL, respectively, wherein the inhibitory effect of 3 against K. pneumoniae was stronger than that of the clinically used antibiotic meropenem, with an MIC value of 8 μg/mL. Our findings may provide new chemical templates for the development of new antibacterial agents against drug-resistant microbial pathogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2018.10.020 | DOI Listing |
As natural furocoumarins, psoralen and its isomer isopsoralen are widely distributed in various fruits including L., vegetables including celery, and medicinal herbs including L. Although psoralen and isopsoralen have been used as dietary supplements because of their bioactivities such as antibacterial and anti-inflammatory properties; however, the potential mechanisms underlying the antioxidant activities of these two furocoumarins still need to be explored.
View Article and Find Full Text PDFThe increasing demand for sustainable food packaging has driven the development of films based on biopolymers. However, enhancing their functional properties remains a challenge. In the current study, potato starch-pectin (PSP) composite films were fabricated and enriched with juniper berry essential oil (JBEO) to improve their physicochemical properties.
View Article and Find Full Text PDFJ Int Soc Prev Community Dent
December 2024
College of Dentistry, Mosul University, Mosul, Iraq.
Background And Aim: In dental clinics, disinfecting alginate impression materials is a critical practice to prevent cross-infection. Recently, zinc oxide nanoparticles (ZnO NPs) have been explored for their potential antimicrobial properties, making them promising additives for dental materials. This study investigates the antimicrobial activity of ZnO NPs incorporated into alginate impression materials and assesses the impact on material flow.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University Nanjing 211166 Jiangsu P. R. China
In this work, three iridium(iii) tetrazolato complexes have been used in antibacterial, biofilm removal and for other bioactivities for the first time. Notably, these iridium(iii) tetrazolato complexes with high antibacterial, especially, Ir-CFTAZ showed the best antimicrobial activity and the most effective hemolytic performance, which may pave the way to explore the value of the complexes for clinical applications in the future.
View Article and Find Full Text PDFRSC Adv
January 2025
College of Food Science and Technology, Jiangsu Agri-animal Husbandry Vocational College Taizhou 225300 China
Bacterial infections are a major global health challenge, posing severe risks to human well-being. Although numerous strategies have been developed to combat bacterial pathogens, their practical application is often hindered by operational constraints. Photocatalytic materials have emerged as promising candidates for bacterial disinfection and food preservation due to their efficiency and sustainability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!