Lysine demethylase 5B (KDM5B) is a histone demethylase identified in 2007, which is responsible for erasing H3K4me2/3 activation marker. It participates in multiple repressive transcriptional complexes around target gene promoters and performs wide regulatory effects on chromatin structure. Until now, there is growing evidence for the oncogenic function of KDM5B. As the H3K4me2/3 residue represents the transcription initiation site of the active transcription gene, and demethylation of H3K4 is associated with transcriptional repression, making it a potential participant in inhibiting the expression of tumor suppressors. Therefore, KDM5B is considered as a promising drug target for cancer therapy, and many medicinal chemists are trying to design and synthesize potent and selective KDM5B inhibitors with the aid of high-throughput screening, structure based drug design, and structure activity relationship studies. This review focuses on the basic biochemical and physiological function of KDM5B and its involved mechanisms in cancers, a comprehensive overview of KDM5B inhibitors is also introduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2018.10.040 | DOI Listing |
Cancer Lett
January 2025
Advanced Medical Research Institute, Qilu College of Medicine, Shandong University, Jinan, 250012, China. Electronic address:
Dysregulated lipid metabolism is linked to tumor progression. In this study, we identified Niemann-Pick C1-like 1 (NPC1L1) as a downstream effector of PKM2. In breast cancer cells, PKM2 knockout (KO) enhanced NPC1L1 expression while downregulating peroxisome proliferator-activated receptor α (PPARα) signaling pathway.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland.
Atherosclerosis is accompanied by inflammation that underlies cardiovascular disease (CVD) and its vascular manifestations, including acute stroke, myocardial infarction, and peripheral artery disease, the leading causes of morbidity/mortality worldwide. The monolayer of endothelial cells formed on the luminal surface of arteries and veins regulates vascular tone and permeability, which supports vascular homeostasis. Endothelial dysfunction, the first step in the development of atherosclerosis, is caused by mechanical and biochemical factors that disrupt vascular homeostasis and induce inflammation.
View Article and Find Full Text PDFJ Virol
January 2025
Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
Marek's disease virus (MDV), a highly contagious and oncogenic avian alphaherpesvirus, establishes a latent infection primarily in CD4 T cells. Latent infections are necessary for both persistent lifelong MDV infection and viral tumorigenesis. MicroRNAs (miRNAs) play critical roles as post-transcriptional regulators of viral infections.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Ph.D. Program in Medical Neuroscience, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan; International Master Program in Medical Neuroscience, Taipei Medical University, New Taipei City 23564, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80780, Taiwan. Electronic address:
Traumatic brain injury (TBI) constitutes a significant burden on global healthcare systems, especially affecting younger populations, where it is a leading cause of disability and mortality. Current treatments for TBI mainly focus on preventing further brain damage and controlling symptoms. However, despite these approaches, several clinical needs remain unmet.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
College of Forensic Medicine, Key Laboratory of National Health Commission for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
Lysine demethylase 7A (KDM7A) catalyzes the removal of dimethylation from histone H3 lysine 9 and lysine 27, both of which are associated with transcription repression. Previous study indicates that Kdm7a mRNA in the medial prefrontal cortex (mPFC) increases after drug exposure, yet its role in drug-related behaviors is largely unknown. In a morphine-conditioned place preference (CPP) paradigm, these findings reveal a specific increase of Kdm7a expression in the mPFC 7 days after drug withdrawal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!