The impact of iron nanoparticles on technetium-contaminated groundwater and sediment microbial communities.

J Hazard Mater

Williamson Research Centre and Research Centre for Radwaste Disposal, School of Earth & Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK.

Published: February 2019

Iron nanoparticles are a promising new technology to treat contaminated groundwater, particularly as they can be engineered to optimise their transport properties. Technetium is a common contaminant at nuclear sites and can be reductively scavenged from groundwater by iron(II). Here we investigated the potential for a range of optimised iron nanoparticles to remove technetium from contaminated groundwater, and groundwater/sediment systems. Nano zero-valent iron and Carbo-iron stimulated the development of anoxic conditions while generating Fe(II) which reduced soluble Tc(VII) to sparingly soluble Tc(IV). Similar results were observed for Fe(II)-bearing biomagnetite, albeit at a slower rate. Tc(VII) remained in solution in the presence of the Fe(III) mineral nano-goethite, until acetate was added to stimulate microbial Fe(III)-reduction after which Tc(VII) concentrations decreased concomitant with Fe(II) ingrowth. The addition of iron nanoparticles to sediment microcosms caused an increase in the relative abundance of Firmicutes, consistent with fermentative/anoxic metabolisms. Residual bacteria from the synthesis of the biomagnetite nanoparticles were out-competed by the sediment microbial community. Overall the results showed that iron nanoparticles were highly effective in removing Tc(VII) from groundwater in sediment systems, and generated sustained anoxic conditions via the stimulation of beneficial microbial processes including Fe(III)-reduction and sulfate reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2018.10.008DOI Listing

Publication Analysis

Top Keywords

iron nanoparticles
20
groundwater sediment
8
sediment microbial
8
contaminated groundwater
8
anoxic conditions
8
nanoparticles
6
groundwater
5
iron
5
impact iron
4
nanoparticles technetium-contaminated
4

Similar Publications

Background: Lenvatinib is an oral tyrosine kinase inhibitor that selectively inhib-its receptors involved in tumor angiogenesis and tumor growth. It is an emerging first-line treatment agent for hepatocellular carcinoma (HCC). However, there is no intravenous ad-ministration of Lenvatinib.

View Article and Find Full Text PDF

Introduction: The development of efficient and sustainable catalytic methodolo-gies has garnered considerable attention in contemporary organic synthesis.

Methods: Herein, we present a novel approach employing the Cu@DPP-SPION catalyst for the synthesis of ethyl 4-(aryl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives. This versatile catalytic system incorporates copper nanoparticles supported on 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzoic acid-functionalized superparamagnetic iron oxide nanoparticles (SPIONs).

View Article and Find Full Text PDF

Observation of the Protein-Inorganic Interface of Ferritin by Cryo-Electron Microscopy.

J Am Chem Soc

January 2025

Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States.

Visualizing the structure of the protein-inorganic interface is critically important for a more complete understanding of biomineralization. Unfortunately, there are limited approaches for the direct and detailed study of biomolecules that interact with inorganic materials. Here, we use single-particle cryo-electron microscopy (cryo-EM) to study the protein-nanoparticle (NP) interactions of human light chain ferritin and visualize the high-resolution details of the protein-inorganic interface.

View Article and Find Full Text PDF

A ROS-responsive hydrogel encapsulated with matrix metalloproteinase-13 siRNA nanocarriers to attenuate osteoarthritis progression.

J Nanobiotechnology

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.

RNA interference (RNAi) and oxidative stress inhibition therapeutic strategies have been extensively utilized in the treatment of osteoarthritis (OA), the most prevalent degenerative joint disease. However, the synergistic effects of these approaches on attenuating OA progression remain largely unexplored. In this study, matrix metalloproteinase-13 siRNA (siMMP-13) was incorporated onto polyethylenimine (PEI)-polyethylene glycol (PEG) modified FeO nanoparticles, forming a nucleic acid nanocarrier termed si-Fe NPs.

View Article and Find Full Text PDF

Strong coupling FeVO nanoparticles/3D N-doped interconnected porous carbon derived from MOFs by confined adsorption-assembly-pyrolysis for greatly boosting oxygen reduction.

J Colloid Interface Sci

January 2025

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China. Electronic address:

Low-cost and effective electrocatalysts are critical for energy storage and conversion. Herein, iron(III) and vanadium(III) acetylacetonates were first adsorbed and confined in porous zeolitic imidazolate framework-8 (ZIF-8), which further cross-linked together by the methanol-induced-assembly. Following the pyrolysis, the FeVO nanoparticles were efficiently encapsulated within three-dimensional (3D) N-doped interconnected porous carbon, termed FeVO/NIPC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!