Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aim: The present study was undertaken to develop a Curcumin nanoparticle system with chitosan as a hydrophilic carrier. In addition, the anti-diabetic potential of curcumin loaded chitosan nanoparticles were assessed in comparison to those of free curcumin by examining the anti-hyperglycemic efficacy using in vitro assays.
Methods: Curcumin loaded chitosan nanoparticles were prepared and characterized for particle size by transmission electron microscopy, FT-IR, differential scanning calorimetry and therapeutic effects of curcumin loaded chitosan nanoparticles were evaluated by measuring the level of GLUT-4 present at the plasma membrane in L6myc myotubes followed by western blotting. Additionally, anti-inflammatory potential of curcumin loaded chitosan nanoparticles were assessed by enzyme immunoassay using appropriate ELISA kits.
Key Findings: Transmission electron microscopy revealed an average nanocurcumin particle size of 74 nm. Under in vitro conditions, treatment with chitosan-nanocurcumin (CS-NC) caused a substantial increase in the GLUT-4 translocation to the cell surface in L6 skeletal muscle cells and the effect was associated with increased phosphorylation of AKT (Ser-473) and its downstream target GSK-3β (Ser-9).
Significance: The therapeutic potential of nanocurcumin is prominent than that of curcumin alone. Nanocurcumin could improve the solubility of curcumin and may prolong its retention in the systemic circulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2018.10.027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!