Characterization of airborne bacterial cells requires efficient collection, concentration, and analysis techniques, particularly to overcome the challenge of their dilute nature in outdoor environments. This study aims to establish a rapid and reliable approach for quantification of bacteria in air samples. To do this, a high volume impingement sampler was applied to collect airborne bacteria from a wastewater treatment plant (WWTP). The bacterial cell density was estimated by a Cytosense flow cytometer (Cytobouy) and compared to quantitative PCR (qPCR) data based on 16S rRNA genes. The average bacterial cell density measured by Cytosense ranged from 1.1 to 2.5 × 10 cells m of air and that estimated by qPCR ranged from 0.08 to 3.8 × 10 cells m of air. Regression analysis showed no systematic difference in bacterial cell densities between two methods applied when the cells were analyzed in vivo, and statistical tests confirmed that Cytosense counts of unfixed samples provided realistic values. Bacterial cell densities and the amount of DNA extracted from the sample were significantly correlated with relative humidity on a sampling day. The results showed that the present method was reliable to estimate bacteria densities from the outdoor environment, and the analysis given by Cytosense was faster and more sensitive than qPCR method. In addition, the Cytosense gave valuable information about cell characteristics at different sampling conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mimet.2018.10.012 | DOI Listing |
J Wound Care
January 2025
Division of Plastic Surgery, Integrated Burn & Wound Care Center, Department of Surgery, Shuang-Ho Hospital, New Taipei City, Taiwan.
Objective: Deep sternal wound infection (DSWI) is a rare but devastating complication that is estimated to occur in 1-2% of patients after median sternotomy. Current standard of care (SoC) comprises antibiotics, debridement and negative pressure wound therapy (NPWT). Hyperbaric oxygen therapy (HBOT) appears to be an effective adjuvant therapy for osteomyelitis.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 165 Rue Marianne Grunberg-Manago, campus Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex, France.
Bacterial genomes contain a plethora of secondary replicons of divergent size. Circular replicons must carry a system for resolving dimeric forms, resulting from recombination between sister copies. These systems use site-specific recombinases.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China.
Antimicrobial resistance (AMR) has emerged as a global challenge in treating bacterial infections, creating an urgent need for broad-spectrum antimicrobial agents that can effectively combat multidrug-resistant (MDR) bacteria. Despite advancements in novel antimicrobial agents, many fail to comprehensively cover common resistant bacterial strains or undergo rigorous multi-center validation. Herein, a cationic AIE-active photosensitizers are developed, ITPM, derived from a triphenylamine-pyridine backbone to address the MDR challenge.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Physics, Yonsei University, Seoul 03722, Republic of Korea.
The rapid and reliable detection of pathogenic bacteria remains a significant challenge in clinical microbiology. Consequently, the demand for simple and rapid techniques, such as antimicrobial peptide (AMP)-based sensors, has recently increased as an alternative to traditional methods. Melittin, a broad-spectrum AMP, rapidly associates with the cell membranes of various gram-positive and gram-negative bacteria.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
Background/objectives: Several independent studies have associated prostate cancer (PCa) with specific groups of bacteria, most of them reporting the presence of anaerobic or microaerophilic species such as (). Such findings suggest a prostate cancer-related bacterial dysbiosis, in a manner similar to the association between infection and gastric cancer. In an earlier exploratory study looking for such dysbiosis events, using a culturomics approach, we discovered that the presence of obligate anaerobes (OAs) along with was associated with increased prostate-specific antigen (PSA) levels in 39 participants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!