Bovine rotavirus (BRV) V 1005 was characterized by two-way cross-neutralization tests as a second serotype of BRV. Virions and inner shell particles of 65 nm and 55 nm diameter respectively, and empty capsids of 65 nm and 55 nm diameter were separated by density gradient centrifugation. Three polypeptides of molecular weight 60,000, 36,000 and 28,000 (minor protein) could be identified in the outer shell of virions and in the larger empty capsids. Inner shell particles contained three polypeptides of molecular weight 105,000, 83,000 and 43,000. Both sizes of empty capsids showed two polypeptides of molecular weight 75,000 and 55,000 not found in virions. Pulse-labelling of infected cells revealed eight major and three minor intracellular viral polypeptides. Viral polypeptides synthesis started at about 6 hours p.i. and correlated in time with double-stranded RNA synthesis. As soon as viral polypeptide synthesis was detectable, newly synthesized viral polypeptides were incorporated into intracellular viral particles. Radioactive viral polypeptides appeared without a longer lag period in extracellular viruses from 6 hours p.i. onwards.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01313723DOI Listing

Publication Analysis

Top Keywords

viral polypeptides
16
empty capsids
12
polypeptides molecular
12
molecular weight
12
bovine rotavirus
8
inner shell
8
shell particles
8
three polypeptides
8
intracellular viral
8
polypeptides
7

Similar Publications

The SARS-CoV-2 papain-like protease PLpro has multiple roles in the viral replication cycle, related to both its polypeptide cleavage function and its ability to antagonize the host immune response. Targeting the PLpro function is recognized as a promising mechanism to modulate viral replication, while supporting host immune responses. However, the development of PLpro-specific inhibitors remains challenging.

View Article and Find Full Text PDF

This review assesses the antiviral capabilities of antimicrobial peptides (AMPs) against SARS-CoV-2 and other respiratory viruses, focussing on their therapeutic potential. AMPs, derived from natural sources, exhibit promising antiviral properties by disrupting viral membranes, inhibiting viral entry, and modulating host immune responses. Preclinical studies demonstrate that peptides such as defensins, cathelicidins, and lactoferrin can effectively reduce SARS-CoV-2 replication and inhibit viral spread.

View Article and Find Full Text PDF

Intranasally administrated fusion-inhibitory lipopeptides block SARS-CoV-2 infection in mice and enable long-term protective immunity.

Commun Biol

January 2025

CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France.

We have assessed antiviral activity and induction of protective immunity of fusion-inhibitory lipopeptides derived from the C-terminal heptad-repeat domain of SARS-CoV-2 spike glycoprotein in transgenic mice expressing human ACE2 (K18-hACE2). The lipopeptides block SARS-CoV-2 infection in cell lines and lung-derived organotypic cultures. Intranasal administration in mice allows the maintenance of homeostatic transcriptomic immune profile in lungs, prevents body-weight loss, decreases viral load and shedding, and protects mice from death caused by SARS-CoV-2 variants.

View Article and Find Full Text PDF

Direct lysine dimethylation of IRF3 by the methyltransferase SMYD3 attenuates antiviral innate immunity.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, People's Republic of China.

Interferon regulatory factor 3 (IRF3) is the key transcription factor in the type I IFN signaling pathway, whose activation is regulated by multiple posttranslational modifications. Here, we identify SMYD3, a lysine methyltransferase, as a negative regulator of IRF3. SMYD3 interacts with IRF3 and catalyzes the dimethylation of IRF3 at lysine 39.

View Article and Find Full Text PDF

Bovine mastitis is a considerable challenge within the dairy industry, causing significant financial losses and threatening public health. The increased occurrence of methicillin-resistant Staphylococcus aureus (MRSA) has provoked difficulties in managing bovine mastitis. Bacteriophage therapy presents a novel treatment strategy to combat MRSA infections, emerging as a possible substitute for antibiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!