Exposure to hot and cold environments increases noradrenaline release in the bed nucleus of the stria terminalis in rats.

Neuropsychopharmacol Rep

Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.

Published: December 2018

Aims: Thermoregulatory responses in homeothermic animals, including humans, are classified into involuntary autonomous and voluntary behavioral thermoregulatory responses. Although behavioral thermoregulatory responses are probably driven by positive (pleasant) and/or negative (unpleasant) emotions, the neuronal mechanisms underlying the induction of negative emotions by hot and cold environments remain poorly understood. The bed nucleus of the stria terminalis is a brain region implicated in stress responses and negative emotions, such as fear, anxiety, and aversion. Various stimuli that cause negative emotions, such as immobilization stress, fox odor, gastric distension, and inflammatory pain, increase noradrenaline release in the rat bed nucleus of the stria terminalis, especially in the ventral bed nucleus of the stria terminalis. It has been reported that the negative emotional component of pain is mediated by noradrenergic neurotransmission in the ventral bed nucleus of the stria terminalis. However, the role of intra-ventral bed nucleus of the stria terminalis noradrenergic neurotransmission in the induction of negative emotion by exposure to hot and cold environments remains to be elucidated. For the first step to address this issue, the effects of hot and cold environments on noradrenaline release in the ventral bed nucleus of the stria terminalis were examined.

Methods: In vivo microdialysis analyses in unanesthetized, freely moving male Sprague-Dawley rats were performed to examine hot and cold environments-induced noradrenaline release in the ventral bed nucleus of the stria terminalis.

Results: Exposure to hot (38°C) and cold (8°C) environments significantly increased noradrenaline release in the ventral bed nucleus of the stria terminalis.

Conclusions: The results suggest that exposure to hot and cold environments enhances noradrenergic neurotransmission in the ventral bed nucleus of the stria terminalis, which may induce negative emotion, and thereby drive avoidance behaviors, that is, escape from hot and cold environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7292319PMC
http://dx.doi.org/10.1002/npr2.12036DOI Listing

Publication Analysis

Top Keywords

bed nucleus
40
nucleus stria
40
stria terminalis
32
hot cold
28
cold environments
24
ventral bed
24
noradrenaline release
20
exposure hot
16
thermoregulatory responses
12
negative emotions
12

Similar Publications

Rapid nongenomic estrogen signaling controls alcohol drinking behavior in mice.

Nat Commun

December 2024

Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.

Ovarian-derived estrogen can signal non-canonically at membrane-associated receptors in the brain to rapidly regulate neuronal function. Early alcohol drinking confers greater risk for alcohol use disorder in women than men, and binge alcohol drinking is correlated with high estrogen levels, but a causal role for estrogen in driving alcohol drinking has not been established. We found that female mice displayed greater binge alcohol drinking and reduced avoidance when estrogen was high during the estrous cycle than when it was low.

View Article and Find Full Text PDF

Restraint to Induce Stress in Mice and Rats.

J Vis Exp

December 2024

Department of Psychological and Brain Sciences, Fairfield University;

Across all animal species, exposure to stressful conditions induces stress responses. One method to study the effects of stress using rodent models is the restraint stress procedure. Restraint stress has been used for decades to investigate changes in physiology, genetics, neurobiology, immunology, and other systems impacted by stress.

View Article and Find Full Text PDF

Anxiety disorders, common yet impactful emotional disturbances, significantly affect physical and mental health globally. Many neuron circuits are associated with anxiety regulation like septo-hippocampal loop, amygdala(AMYG), bed nucleus of the stria terminalis (BNST), ventral hippocampus (vHPC), and brain regions like medial prefrontal cortex (mPFC). However, the concrete mechanism of anxiety disorder in BNST is relatively unknown.

View Article and Find Full Text PDF

from enhances the stress resistance of transgenic .

PeerJ

December 2024

College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China.

Background: (× Ramat.) is a particularly important autumn perennial flower for potted plant, flower bed and border, and cut flower with high ornamental value. However, abiotic stress can affect the ornamental quality of .

View Article and Find Full Text PDF

Development and function of the medial amygdala.

Trends Neurosci

December 2024

Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA 20010. Electronic address:

Across studied vertebrates, the medial amygdala (MeA) is a central hub for relaying sensory information with social and/or survival relevance to downstream nuclei such as the bed nucleus of stria terminalis (BNST) and the hypothalamus. MeA-driven behaviors, such as mating, aggression, parenting, and predator avoidance are processed by different molecularly defined inhibitory and excitatory neuronal output populations. Work over the past two decades has deciphered how diverse MeA neurons arise from embryonic development, revealing contributions from multiple telencephalic and diencephalic progenitor domains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!