Exploration of brain dynamics patterns has attracted increasing attention due to its fundamental significance in understanding the working mechanism of the brain. However, due to the lack of effective modeling methods, how the simultaneously recorded LFP can inform us about the brain dynamics remains a general challenge. In this paper, we propose a novel sparse coding based method to investigate brain dynamics of freely-behaving mice from the perspective of functional connectivity, using super-long local field potential (LFP) recordings from 13 distinct regions of the mouse brain. Compared with surrogate datasets, six and four reproducible common functional connectivities were discovered to represent the space of brain dynamics in the frequency bands of alpha and theta respectively. Modeled by a finite state machine, temporal transition framework of functional connectivities was inferred for each frequency band, and evident preference was discovered. Our results offer a novel perspective for analyzing neural recording data at such high temporal resolution and recording length, as common functional connectivities and their transition framework discovered in this work reveal the nature of the brain dynamics in freely behaving mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374165 | PMC |
http://dx.doi.org/10.1007/s10548-018-0682-3 | DOI Listing |
Sci Rep
January 2025
Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.
Recently, exposure to sounds with ultrasound (US) components has been shown to modulate brain activity. However, the effects of US on emotional states remain poorly understood. We previously demonstrated that the olfactory bulbectomized (OBX) rat depression model is suitable for examining the effects of audible sounds on emotionality.
View Article and Find Full Text PDFSci Rep
January 2025
Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO, 63110, USA.
Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid.
View Article and Find Full Text PDFNeuroimage
January 2025
Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark.
When engaged in dynamic or continuous movements, action initiation involves modifying an ongoing motor program rather than initiating it from rest. Event-related theta synchronization over sensorimotor areas is a neurophysiological marker for modifying motor programs. We used electroencephalography (EEG) to examine how task complexity and age affect event-related synchronization (ERS) in the theta band during a dynamic bimanual, visuomotor pinch force task.
View Article and Find Full Text PDFNeuroimage
January 2025
State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China. Electronic address:
Many theories suggest that creative thinking involves a dynamic transition between different mental states, yet empirical evidence supporting this notion remains scarce. The dual process model proposes that spontaneous thinking and deliberate thinking drive the dwell in and the transitions between different mental states during creative thinking, but there is a debate over whether the two types of thinking operate in parallel or in sequence. To address these gaps, we conducted a functional magnetic resonance imaging (fMRI) study in 41 college students during a creative storytelling task.
View Article and Find Full Text PDFConscious Cogn
January 2025
Humane Technology Lab, Catholic University of Sacred Heart, Milan, Italy; Applied Technology for Neuro-Psychology Lab., Istituto Auxologico Italiano IRCCS, Milan, Italy. Electronic address:
Psychedelic drugs offer valuable insights into consciousness, but disentangling their causal effects on perceptual and high-level cognition is nontrivial. Technological advances in virtual reality (VR) and machine learning have enabled the immersive simulation of visual hallucinations. However, comprehensive experimental data on how these simulated hallucinations affects high-level human cognition is lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!