Background: Germline variants in DNA methyltransferase 3B (DNMT3B) may influence DNMT3B enzymatic activity, which, in turn, may affect cancer aggressiveness by altering DNA methylation.

Methods: The study involves two Italian cohorts (NTAT cohort, n = 157, and 1980s biopsy cohort, n = 182) and two U.S. cohorts (Health Professionals Follow-Up Study, n = 214, and Physicians' Health Study, n = 298) of prostate cancer (PCa) patients, and a case-control study of lethal (n = 113) vs indolent (n = 290) PCa with DNMT3B mRNA expression data nested in the U.S. cohorts. We evaluated the association between: three selected DNMT3B variants and global DNA methylation using linear regression in the NTAT cohort, the three DNMT3B variants and PCa mortality using Cox proportional hazards regression in all cohorts, and DNMT3B expression and lethal PCa using logistic regression, with replication in publicly available databases (TCGA, n = 492 and MSKCC, n = 140).

Results: The TT genotype of rs1569686 was associated with LINE-1 hypomethylation in tumor tissue (β = -2.71, 95% CI: -5.41, -0.05). There was no evidence of association between DNMT3B variants and PCa mortality. DNMT3B expression was consistently associated with lethal PCa in the two U.S. cohorts (3rd vs 1st tertile, combined cohorts: OR = 2.04, 95% CI: 1.13, 3.76); the association was replicated in TCGA and MSKCC data (3rd vs 1st tertile, TCGA: HR = 3.00, 95% CI: 1.78, 5.06; MSKCC: HR = 2.22, 95% CI: 1.01, 4.86).

Conclusions: Although there was no consistent evidence of an association between DNMT3B variants and PCa mortality, the TT genotype of rs1569686 was associated with LINE-1 hypomethylation in tumor tissue and DNMT3B mRNA expression was associated with an increased risk of lethal PCa.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41391-018-0102-5DOI Listing

Publication Analysis

Top Keywords

dnmt3b variants
16
dnmt3b
12
dnmt3b mrna
12
mrna expression
12
variants pca
12
pca mortality
12
lethal pca
12
prostate cancer
8
ntat cohort
8
pca
8

Similar Publications

DNA methylation, catalyzed by DNA methyltransferases (DNMT), plays pivotal role in regulating embryonic development, gene expression, adaption to environmental stress, and maintaining genome integrity. DNMT family consists of DNMT1, DNMT3A, DNMT3B, and the enzymatically inactive DNMT3L. DNMT3A and DNMT3B establish novel methylation patterns maintained by DNMT1 during replication.

View Article and Find Full Text PDF

Background: Global methylation refers to the total methylation in the DNA and can also be inferred from the Line 1 and Alu regions, as these repeats are very abundant in the genome. The main function of DNA methylation is to control gene expression and is associated with both normal and pathological mechanisms. DNA methylation depends on enzymes that generate the methyl radical (e.

View Article and Find Full Text PDF
Article Synopsis
  • ICF syndrome is a rare, autosomal recessive disease linked to mutations in specific genes (DNMT3B, ZBTB24, CDCA7, HELLS) that lead to immune deficiencies and facial anomalies.
  • This study examined the expression of transcription factors and cytokines in various helper T cell subsets from ICF patients and found significant reductions in these factors compared to healthy controls.
  • It also identified a novel mutation in the ZBTB24 gene related to ICF2 syndrome, marking the first molecular investigation of T cell subsets in ICF syndrome.
View Article and Find Full Text PDF

Context-Dependent and Locus-Specific Role of H3K36 Methylation in Transcriptional Regulation.

J Mol Biol

January 2025

Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea. Electronic address:

H3K36 methylation is a critical histone modification involved in transcription regulation. It involves the mono (H3K36me1), di (H3K36me2), and/or tri-methylation (H3K36me3) of lysine 36 on histone H3 by methyltransferases. In yeast, Set2 catalyzes all three methylation states.

View Article and Find Full Text PDF

Cellular senescence is widely acknowledged as having strong associations with cancer. However, the intricate relationships between cellular senescence-related (CSR) genes and cancer risk remain poorly explored, with insights on causality remaining elusive. In this study, Mendelian Randomization (MR) analyses were used to draw causal inferences from 866 CSR genes as exposures and summary statistics for 18 common cancers as outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!