Endogenous nitrosothiols (SNOs) including S-nitrosoglutathione (GSNO) serve as reservoir for bioavailable nitric oxide (NO) and mediate NO-based signaling, inflammatory status and smooth muscle function in the lung. GSNOR inhibition increases pulmonary GSNO and induces bronchodilation while reducing inflammation in lung diseases. In this letter, design, synthesis and structure-activity relationships (SAR) of novel imidazole-biaryl-tetrazole based GSNOR inhibitors are described. Many potent inhibitors (30, 39, 41, 42, 44, 45 and 58) were identified with low nanomolar activity (ICs: <15 nM) along with adequate metabolic stability. Lead compounds 30 and 58 exhibited good exposure and oral bioavailability in mouse pharmacokinetic (PK) study. Compound 30 was selected for further profiling and revealed comparable mouse and rat GSNOR potency, high selectivity against alcohol dehydrogenase (ADH) and carbonyl reductase (CBR1) family of enzymes, low efflux ratio and permeability in PAMPA, a high permeability in CALU-3 assay, significantly low hERG activity and minimal off-target activity. Further, an in vivo efficacy of compound 30 is disclosed in cigarette smoke (CS) induced mouse model for COPD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2018.10.012DOI Listing

Publication Analysis

Top Keywords

gsnor inhibitors
8
discovery 5-2-chloro-4'-1h-imidazol-1-yl-[11'-biphenyl]-4-yl-1h-tetrazole
4
5-2-chloro-4'-1h-imidazol-1-yl-[11'-biphenyl]-4-yl-1h-tetrazole potent
4
potent orally
4
orally efficacious
4
efficacious s-nitrosoglutathione
4
s-nitrosoglutathione reductase
4
reductase gsnor
4
inhibitors potential
4
potential treatment
4

Similar Publications

Previously, we reported that both S-nitrosoglutathione (GSNO), a carrier of cellular nitric oxide, and N6022, an injectable form of GSNO reductase (GSNOR) inhibitor that increases endogenous GSNO levels, alleviate experimental autoimmune encephalomyelitis (EAE) in mice by suppressing Th1 and Th17 immune responses. Building on these findings, we explored the role of GSNOR in EAE pathogenesis and evaluated the efficacy of an orally active GSNOR inhibitor (N91115) in treating the EAE disease. EAE mice exhibited heightened expression/activity of GSNOR in the spinal cord, and the knockout of the GSNOR gene resulted in much milder clinical manifestations of EAE, with lower degrees of demyelination and axonal loss, reduced microglial and astrocyte activations, as well as suppressed Th1 and Th17 cell responses, alongside bolstered Treg immune responses.

View Article and Find Full Text PDF

S-nitrosoglutathione reductase disfavors cadmium tolerance in shoots of Arabidopsis.

Sci Rep

November 2024

Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.

S-nitrosoglutathione reductase (GSNOR) is involved in the response to cadmium (Cd) exposure. In this study, the plants of mutant (gsnor1-3) with lossing-function of- and over-expression (GSNOR5) of GSNOR were used to clear the role of GSNOR in Cd tolerance. GSNOR activity increased through upregulating the expression of the AtGSNOR gene and protein in Arabidopsis thaliana under Cd stress, which attenuated Cd tolerance.

View Article and Find Full Text PDF

Glutathione is required for nitric oxide-induced chilling tolerance by synergistically regulating antioxidant system, polyamine synthesis, and mitochondrial function in cucumber (Cucumis sativus L.).

Plant Physiol Biochem

September 2024

Department of Horticulture, Agricultural College, Shihezi University, Shihezi, Xinjiang, 832003, China; Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Crops, Shihezi, Xinjiang,832003, China. Electronic address:

In this paper, we discussed the physiological mechanism of enhanced chilling tolerance with combined treatment of nitric oxide (NO) and reduced glutathione (GSH) in cucumber seedlings. With prolonged low temperature (10 °C/6 °C), oxidative stress improved, which was manifested as an increase the hydrogen peroxide (HO) and malondialdehyde (MDA), causing cell membrane damage, particularly after 48 h of chilling stress. Exogenous sodium nitroprusside (SNP, NO donor) enhanced the activity of nitric oxide synthase NOS-like, the contents of GSH and polyamines (PAs), and the cellular redox state, thus regulating the activities of mitochondrial oxidative phosphorylation components (CI, CII, CIV, CV).

View Article and Find Full Text PDF

De-nitrosylation Coordinates Appressorium Function for Infection of the Rice Blast Fungus.

Adv Sci (Weinh)

July 2024

National Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.

As a signaling molecule, nitric oxide (NO) regulates the development and stress response in different organisms. The major biological activity of NO is protein S-nitrosylation, whose function in fungi remains largely unclear. Here, it is found in the rice blast fungus Magnaporthe oryzae, de-nitrosylation process is essential for functional appressorium formation during infection.

View Article and Find Full Text PDF

N6022 attenuates cerebral ischemia/reperfusion injury-induced microglia ferroptosis by promoting Nrf2 nuclear translocation and inhibiting the GSNOR/GSTP1 axis.

Eur J Pharmacol

June 2024

Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China; Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, Shandong, China; Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, NC, 27707, USA. Electronic address:

Stroke poses a significant risk of mortality, particularly among the elderly population. The pathophysiological process of ischemic stroke is complex, and it is crucial to elucidate its molecular mechanisms and explore potential protective drugs. Ferroptosis, a newly recognized form of programmed cell death distinct from necrosis, apoptosis, and autophagy, is closely associated with the pathophysiology of ischemic stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!