A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

9-PAHSA promotes browning of white fat via activating G-protein-coupled receptor 120 and inhibiting lipopolysaccharide / NF-kappa B pathway. | LitMetric

9-PAHSA promotes browning of white fat via activating G-protein-coupled receptor 120 and inhibiting lipopolysaccharide / NF-kappa B pathway.

Biochem Biophys Res Commun

Department of Geriatrics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Pudong New Area, Shanghai, 200127, China. Electronic address:

Published: November 2018

Browning of white adipose tissue is a novel mechanism to counteract obesity in view of its thermogenic activity. Activation of G-protein-coupled receptor 120 (GPR120) can promote the browning of white fat. 9-PAHSA, an endogenous mammalian lipid, which is acting as the ligand of GPR120 to enhance glucose uptake and exert anti-inflammatory effect. In the study, we would like to investigate the biological effects of 9-PAHSA on adipocyte browning. Here, we show that 9-PAHSA induces browning of 3T3-L1 adipocytes via enhanced expression of brown fat specific genes. 9-PAHSA-induced browning in white adipocytes of WT mice and ob/ob mice was investigated by determining expression levels of brown adipocyte-specific genes/proteins by quantitative real-time polymerase chain reaction analysis, immunoblot analysis and immunochemical staining. The effects of 9-PAHSA on brown fat markers in 3T3-L1 cells were decreased when GPR120 gene was silenced. To investigate the molecular mechanism of 9-PAHSA on adipocyte browning, lipopolysaccharide (LPS)-induced inflammatory model was conducted. 9-PAHSA treatment abolished LPS-induced NF-kappa B (NF-κB) activation and inflammatory cytokine secretion. But these anti-inflammatory effects of 9-PAHSA were attenuated by GPR120 knockdown. Our finding demonstrated that the browning of adipocyte was induced by 9-PAHSA through activating GPR120 and inhibiting the LPS/NF-κB pathway. This promising result will help to reveal the potential pathogenesis of obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2018.09.050DOI Listing

Publication Analysis

Top Keywords

browning white
16
effects 9-pahsa
12
9-pahsa
9
browning
8
white fat
8
g-protein-coupled receptor
8
receptor 120
8
9-pahsa adipocyte
8
adipocyte browning
8
brown fat
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!