Water regulation of the Xiaolangdi Reservoir of the Yellow River was chosen as a case to investigate variations in concentrations and bioavailability of heavy metals caused by water conservancy projects in rivers. Water and suspended sediment (SPS) samples were collected at downstream sampling sites along the river during this period. Concentrations and speciation of Zn, Cr, Cu, Ni, and Pb in water and SPS samples were analyzed, and their bioaccumulation was studied with Daphnia magna. This study indicated that the exchangeable and carbonate-bound fractions of heavy metals in SPS decreased along the studied stretch, and the dissolved heavy metal concentrations increased along the river with 1.6-15 folds. This is because sediment resuspension increased along the river during water regulation, giving rise to the increase of heavy metal release from SPS. The dissolved Zn, Cu, Ni, and Pb concentrations were significantly positively correlated with SPS concentrations, and their increase along the river was greater than Cr. The body burdens of heavy metals in D. magna exposed into samples collected from the reservoir outlet were 1.3-3.0 times lower than those from downstream stations, suggesting that the heavy metal bioavailability increased during water regulation. This should be considered in the reservoir operation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2018.02.009 | DOI Listing |
Front Plant Sci
January 2025
College of Agriculture, Agricultural University of Hunan, Changsha, China.
Introduction: Heavy metal soil pollution is a global issue that can be efficiently tackled through the process of phytoremediation. The use of rapeseed in the phytoremediation of heavy metal-contaminated agricultural land shows great potential. Nevertheless, its ability to tolerate heavy metal stress at the molecular level remains unclear.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Rheumatology, Oslo University Hospital, Oslo, Norway.
Objectives: Juvenile idiopathic arthritis (JIA) originates from a complex interplay between genetic and environmental factors. We investigated the association between seafood intake and dietary contaminant exposure during pregnancy and JIA risk, to identify sex differences and gene-environment interactions.
Methods: We used the Norwegian Mother, Father, and Child Cohort Study (MoBa), a population-based prospective pregnancy cohort (1999-2008).
Front Immunol
January 2025
Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
Natural killer (NK) cells are innate immune cells that play a crucial role as a first line of defense against viral infections and tumor development. Iron is an essential nutrient for immune cells, but it can also pose biochemical risks such as the production of reactive oxygen species. The importance of iron for the NK cell function has gained increasing recognition.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA.
Introduction: Iron-mediated cell death (ferroptosis) is a proposed mechanism of Alzheimer's disease (AD) pathology. While iron is essential for basic biological functions, its reactivity generates oxidants which contribute to cell damage and death.
Methods: To further resolve mechanisms of iron-mediated toxicity in AD, we analyzed post mortem human brain and ApoEFAD mice.
Alzheimers Dement
January 2025
Department of Radiology, China-Japan Friendship Hospital, Beijing, China.
Introduction: The link between overload brain iron and transcriptional/cellular signatures in Alzheimer's disease (AD) remains inconclusive.
Methods: Iron deposition in 41 cortical and subcortical regions of 30 AD patients and 26 healthy controls (HCs) was measured using quantitative susceptibility mapping (QSM). The expression of 15,633 genes was estimated in the same regions using transcriptomic data from the Allen Human Brain Atlas (AHBA).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!